go to main content go to main menu go to right sidebar go to footer
LOGO Summer School - biomech.tugraz.atSummer school on Biomechanics
and Modeling in Mechanobiology
LOGO TU Graz
Institute of Biomechanics
Professor Gerhard A. Holzapfel Graz University of Technology, Austria
  • Home
  • Objectives
  • Lecturers
  • Registration
  • Program
  • Venue
  • Accommodation
  • Graz Info

The Summer School
  • Click to enlarge image SuSc2018_ (001).jpg
  • Click to enlarge image SuSc2018_ (003).jpg
  • Click to enlarge image SuSc2018_ (004).JPG
  • Click to enlarge image SuSc2018_ (006).JPG
  • Click to enlarge image SuSc2018_ (007).JPG
  • Click to enlarge image SuSc2018_ (008).JPG
  • Click to enlarge image SuSc2018_ (009).JPG
  • Click to enlarge image SuSc2018_ (010).JPG
  • Click to enlarge image SuSc2018_ (011).JPG
  • Click to enlarge image SuSc2018_ (012).JPG
  • Click to enlarge image SuSc2018_ (013).JPG
  • Click to enlarge image SuSc2018_ (014).JPG
  • Click to enlarge image SuSc2018_ (015).JPG
  • Click to enlarge image SuSc2018_ (017).JPG
  • Click to enlarge image SuSc2018_ (018).JPG
  • Click to enlarge image SuSc2018_ (019).JPG
  • Click to enlarge image SuSc2018_ (020).JPG
  • Click to enlarge image SuSc2018_ (021).JPG
  • Click to enlarge image SuSc2018_ (022).JPG
  • Click to enlarge image SuSc2018_ (023).JPG
  • Click to enlarge image SuSc2018_ (024).JPG
  • Click to enlarge image SuSc2018_ (025).JPG
  • Click to enlarge image SuSc2018_ (026).JPG
  • Click to enlarge image SuSc2018_ (027).jpg
  • Click to enlarge image SuSc2018_ (028).jpg
  • Click to enlarge image SuSc2018_ (029).jpg
  • Click to enlarge image SuSc2018_ (030).jpg
  • Click to enlarge image SuSc2018_ (032).jpg
  • Click to enlarge image SuSc2018_ (033).jpg
  • Click to enlarge image SuSc2018_ (034).jpg
  • Click to enlarge image SuSc2018_ (035).jpg
  • Click to enlarge image SuSc2018_ (036).jpg
  • Click to enlarge image SuSc2018_ (042).jpg
  • Click to enlarge image SuSc2018_ (043).jpg
  • Click to enlarge image SuSc2018_ (044).jpg
  • Click to enlarge image SuSc2018_ (047).jpg
  • Click to enlarge image SuSc2018_ (048).jpg
  • Click to enlarge image SuSc2018_ (049).jpg
  • Click to enlarge image SuSc2018_ (050).jpg
  • Click to enlarge image SuSc2018_ (051).jpg
  • Click to enlarge image SuSc2018_ (053).jpg
  • Click to enlarge image SuSc2018_ (054).jpg
  • Click to enlarge image SuSc2018_ (055).jpg
  • Click to enlarge image SuSc2018_ (056).jpg
  • Click to enlarge image SuSc2018_ (057).jpg
  • Click to enlarge image SuSc2018_ (058).jpg
  • Click to enlarge image SuSc2018_ (059).jpg
  • Click to enlarge image SuSc2018_ (060).jpg
  • Click to enlarge image SuSc2018_ (061).jpg
  • Click to enlarge image SuSc2018_ (062).jpg
  • Click to enlarge image SuSc2018_ (063).jpg
  • Click to enlarge image SuSc2018_ (064).jpg
  • Click to enlarge image SuSc2018_ (065).jpg
  • Click to enlarge image SuSc2018_ (066).jpg
  • Click to enlarge image SuSc2018_ (067).jpg
  • Click to enlarge image SuSc2018_ (068).jpg
  • Click to enlarge image SuSc2018_ (069).JPG
  • Click to enlarge image SuSc2018_ (125).JPG
  • Click to enlarge image SuSc2018_ (126).jpg
  • Click to enlarge image SuSc2018_ (127).JPG
  • Click to enlarge image SuSc2018_ (128).jpg
  •  

Presenations from Participants
  • Click to enlarge image SuSc2018_ (037).jpg
  • Click to enlarge image SuSc2018_ (038).jpg
  • Click to enlarge image SuSc2018_ (039).jpg
  • Click to enlarge image SuSc2018_ (040).jpg
  • Click to enlarge image SuSc2018_ (041).jpg
  • Click to enlarge image SuSc2018_ (070).JPG
  • Click to enlarge image SuSc2018_ (071).JPG
  • Click to enlarge image SuSc2018_ (072).JPG
  • Click to enlarge image SuSc2018_ (073).jpg
  • Click to enlarge image SuSc2018_ (075).JPG
  • Click to enlarge image SuSc2018_ (076).JPG
  • Click to enlarge image SuSc2018_ (077).JPG
  • Click to enlarge image SuSc2018_ (078).JPG
  • Click to enlarge image SuSc2018_ (079).JPG
  • Click to enlarge image SuSc2018_ (080).JPG
  • Click to enlarge image SuSc2018_ (081).jpg
  • Click to enlarge image SuSc2018_ (082).JPG
  • Click to enlarge image SuSc2018_ (084).JPG
  • Click to enlarge image SuSc2018_ (085).jpg
  • Click to enlarge image SuSc2018_ (086).jpg
  • Click to enlarge image SuSc2018_ (087).jpg
  • Click to enlarge image SuSc2018_ (088).jpg
  • Click to enlarge image SuSc2018_ (089).JPG
  • Click to enlarge image SuSc2018_ (090).JPG
  • Click to enlarge image SuSc2018_ (091).JPG
  • Click to enlarge image SuSc2018_ (092).jpg
  • Click to enlarge image SuSc2018_ (093).JPG
  • Click to enlarge image SuSc2018_ (094).jpg
  • Click to enlarge image SuSc2018_ (095).JPG
  • Click to enlarge image SuSc2018_ (096).JPG
  • Click to enlarge image SuSc2018_ (097).JPG
  • Click to enlarge image SuSc2018_ (098).JPG
  • Click to enlarge image SuSc2018_ (099).JPG
  • Click to enlarge image SuSc2018_ (100).JPG
  • Click to enlarge image SuSc2018_ (101).JPG
  • Click to enlarge image SuSc2018_ (102).JPG
  • Click to enlarge image SuSc2018_ (103).JPG
  • Click to enlarge image SuSc2018_ (104).JPG
  • Click to enlarge image SuSc2018_ (105).JPG
  • Click to enlarge image SuSc2018_ (106).JPG
  • Click to enlarge image SuSc2018_ (107).JPG
  • Click to enlarge image SuSc2018_ (108).JPG
  • Click to enlarge image SuSc2018_ (109).JPG
  • Click to enlarge image SuSc2018_ (110).JPG
  • Click to enlarge image SuSc2018_ (111).JPG
  • Click to enlarge image SuSc2018_ (112).JPG
  • Click to enlarge image SuSc2018_ (113).JPG
  • Click to enlarge image SuSc2018_ (114).JPG
  • Click to enlarge image SuSc2018_ (115).JPG
  • Click to enlarge image SuSc2018_ (116).JPG
  • Click to enlarge image SuSc2018_ (117).JPG
  • Click to enlarge image SuSc2018_ (118).JPG
  • Click to enlarge image SuSc2018_ (119).JPG
  • Click to enlarge image SuSc2018_ (120).JPG
  • Click to enlarge image SuSc2018_ (121).JPG
  • Click to enlarge image SuSc2018_ (123).JPG
  • Click to enlarge image SuSc2018_ (124).JPG
  • Click to enlarge image SuSc2018_ (126).JPG
  •  

   
 

Frank P.T. Baaijens

Eindhoven University of Technology
Department of Biomedical Engineering
WH 4.137
5600 MB Eindhoven, The Netherlands

E-mail: F.P.T.Baaijens@tue.nl
www.mate.tue.nl/mate/showemp.php/11

Mechanics and tissue engineering of heart valves; collagen mechanics, remodelling, synthesis and degradation; actin cytoskeleton; muscle damage etiology – computation

   
   
 

Alain Goriely

University of Oxford
Mathematical Institute
24-29 St Giles'
Oxford OX1 3LB, UK

E-mail: Alain.Goriely@maths.ox.ac.uk
www.maths.ox.ac.uk/contact/details/goriely

Topology, geometry and mechanics of biofilaments – applications to macromolecules, plants and neurons; modeling growth with applications to plants, bones, neurons, tissues and tumours; morphogenesis and stability of soft tissues

   
   
 

Gerhard A. Holzapfel

Graz University of Technology
Institute of Biomechanics
Center of Biomedical Engineering
Kronesgasse 5-I
8010 Graz, Austria

E-mail: holzapfel@tugraz.at
www.biomech.tugraz.at

Structure and function of artery walls in health and disease; mechanics, mechanobiology, and modeling of abdominal aortas and aneurysms; multi-scale modeling of biopolymer networks; modeling of smooth muscle activation

   
   
 

Ellen Kuhl

Stanford University
Department of Mechanical Engineering
440 Escondido Mall
Stanford, CA 94305-3030, USA

E-mail: ekuhl@stanford.edu
soe.stanford.edu/research/layout.php?sunetid=ekuhl

Electrophysiology – from action potentials to electro-cardiograms, electromechanics – from actin-myosin sliding to cardiac output and related FE models; electrochemistry: from channelrhodopsin to pacing hearts with light, acute and chronic cardiac disease; dynamics of the mitral valve

   
   
 

Chwee Teck Lim

National University of Singapore
Department of Mechanical Engineering
9 Engineering Drive 1
Singapore 117576, Singapore

E-mail: ctlim@nus.edu.sg
http://me.nus.edu.sg/popup_personnalprofile.php?staffid=77

Mechanical models for living cells; experimental techniques for cell and molecular mechanics; human disease biomechanics, focus on malaria and on cancer; cell migration studies in 2D and 3D

   
   
 

Ray W. Ogden

University of Aberdeen
6th Century Chair in Solid Mechanics
Fraser Noble Building
Aberdeen AB24 3UE, UK

E-mail: r.ogden@abdn.ac.uk
www.abdn.ac.uk/engineering/people/details.php?id=r.ogden

Elements of continuum mechanics; mechanics of a biopolymer filament; constitutive modelling of the myocardium; residual stresses with applications to arterial modelling; notions of stability

   
   
 

Kevin K. Parker

Harvard University
Disease Biophysics Group
29 Oxford St., Pierce Hall 321
Cambridge, MA 02138, USA

E-mail: kkparker@seas.harvard.edu
www.seas.harvard.edu/directory/kkparker

Mechanics of the developing heart; mechanics of the cardiac cycle; cell/tissue mechanics of the cardiac myocyte including background on how a cell builds itself; from cell to tissue mechanics in the diseased heart

   
Barocas

Victor Barocas

University of Minnesota
Department of Biomedical Engineering
7-115 Nils Hasselmo Hall
Minneapolis, MN 55455, USA

E-mail: baroc001@umn.edu
http://bme.umn.edu/people/faculty/barocas.html

Microstructural and multi-scale modeling; collagenous tissues; engineered tissues; failure of networks and tissues



 Holmes

Jeffrey W. Holmes

University of Virginia
Department of Biomedical Engineering
Box 800759
Charlottesville, Virginia 22908, USA

E-mail: holmes@virginia.edu
http://bme.virginia.edu/people/holmes.html

Heart function; myocardial infarction; myocardial material properties; biaxial mechanical testing; anisotropy; compartmental models; agent-based models; finite-element models



 

Gerhard A. Holzapfel

Graz University of Technology
Institute of Biomechanics
Center of Biomedical Engineering
Kronesgasse 5-I
8010 Graz, Austria

E-mail: holzapfel@tugraz.at
www.biomech.tugraz.at

Artery walls in health and disease; constitutive modeling of cross-linked actin networks; mechanics/modeling of the myocardium and the adipose tissue; mechanics of brain tissue



 McHugh

Peter McHugh

National University of Ireland, Galway
Discipline of Biomedical Engineering
College of Engineering and Informatics
University Road
Galway, Ireland

E-mail: peter.mchugh@nuigalway.ie
http://www.nuigalway.ie/mechbio/staff/staff_pmh.html

Atherosclerotic plaque; permanent and biodegradable vascular stents; pulmonary and heart valve implants; cell mechanics



 McMeeking

Robert McMeeking

University of California, Santa Barbara
Department of Mechanical and Environmental Engineering
CA 93106
California, USA

E-mail: rmcm@engineering.ucsb.edu
http://engineering.ucsb.edu/faculty/profile/204

Bio-chemo-mechanical cell models; stress fiber formation and remodeling; cytoskeletal contractility; actomyosin cross-bridging; cell adhesion; focal adhesion formation and growth; signaling



 

Ray W. Ogden

University of Glasgow
School of Mathematics and Statistics
University Gardens
Glasgow G12 8QW, UK

E-mail: raymond.ogden@glasgow.ac.uk
www.maths.gla.ac.uk/~rwo/

The essential ingredients of continuum mechanics; constitutive modeling of fiber-reinforced materials; residual stresses and their influence on material response, with particular reference to arteries; elasticity of biopolymer filaments and networks

The Summer School will present a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of biological tissue from the structural to the macroscopic level. The lecturers will discuss biomolecules, networks and cells as well as growth models appropriate for computational analysis. Applications include arteries, muscles, the heart, plants, neurons and tumours.

Cell migration, the mechanics of the whole cell and sub-cellular components will be discussed including smooth muscle cells and cardiac myocytes. This links with the discussion of growth, which builds on the constituents of soft tissue. Growth modeling includes applications to plants, bones, soft tissue, cancer and other human diseases.

Continuum mechanics underpins much of the modeling required in the biomechanics and mechanobiology of tissues. A summary of the key ingredients of continuum mechanics is therefore provided with particular emphasis on the nonlinear theory of elasticity, as a starting point for characterizing material properties. Models of the mechanical and other properties of individual biomolecules, networks of biomolecules and living cells will be examined. Also experimental techniques for determining the mechanical properties of biomolecules and cells will be presented. Modeling the interaction between growth, remodeling and the mechanics of biomolecules, cells and tissues will be discussed. Particular attention will be focused on modeling, finite element implementation and simulation of the mechanics, electromechanics, chemomechanics and electrophysiology of cells, artery walls, the heart and the cardiac cycle. This will include discussions of abdominal aortic aneurysms and heart valves. Adipose and epidermal tissues will also be discussed from both modeling and experimental perspectives.

Throughout the course the lecturers will point to future directions for research in the different areas of biomechanics and mechanobiology as well as coupled phenomena.

 

 

 

Audience

The Summer School is addressed to PhD students and postdoctoral researchers in biomedical engineering, (bio)physics, mechanical and civil engineering, applied mathematics, physiology and materials science and more senior scientists and engineers (including some from relevant industries) whose interests are in the area of biomechanics and mechanobiology.

 
 

Preliminary Suggested Readings

F Baaijens, C Bouten, N Driessen: Modeling collagen remodeling. J Biomech, 2010;43:166-75. [pdf]

KR Chien, IJ Domain, KK Parker: Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science, 2008;322:1494-7. Review. [pdf]

NJ Driessen, MA Cox, CV Bouten, FP Baaijens: Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol. 2008;7:93-103. [pdf]

A Goriely, DE Moulton: Morphoelasticity – a theory of elastic growth; in M. Ben Amar, A. Goriely, M. Mueller (eds.): New Trends in the Mechanics of Biological Systems, Oxford University Press, 2011. [pdf]

A Goriely, M Robertson-Tessi, M Tabor, R Vandiver: Elastic growth models; in RP Mondaini, PM Pardalos, (eds.): Mathematical Modelling of Biosystems, Applied Optimization Series, Vol. 102, Springer-Verlag, 2008. [pdf]

S Göktepe, OJ Abilez, E Kuhl: A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids, 2010;58:1661-80. [pdf]

S Göktepe, E Kuhl: Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Comput Mech, 2010;45:227-43. [pdf]

GA Holzapfel, RW Ogden: On the bending and stretching elasticity of biopolymer filaments, Journal of Elasticity, 2011;104:319-42. [pdf]

GA Holzapfel, RW Ogden: Constitutive modelling of arteries. Proceedings of the Royal Society A, 2010;466:1551-97. [pdf]

GA Holzapfel, RW Ogden (eds.): Biomechanical Modeling at the Molecular, Cellular and Tissue Levels, CISM Courses and Lectures No. 508. Springer: Wien, New York, 2009.

GYY Lee, CT Lim: Biomechanics approaches to studying human disease, Trends in Biotechnology, 2007;25:111-8. [pdf]

CT Lim, EH Zhou, ST Quek: Mechanical models for living cells - a review, Journal of Biomechanics, 2006;39:195-216. [pdf]

ML McCain, KK Parker: Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch. 2011 Jul;462(1):89-104. [pdf]

S Murtada, M Kroon, GA Holzapfel: A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomechanics and Modeling in Mechanobiology, 2010;9:749-62. [pdf]

KK Parker, DE Ingber: Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1267-79. Review. [pdf]

KK Parker, J Tan, CS Chen, L Tung: Myofibrillar architecture in engineered cardiac myocytes. Circ Res, 2008;103:340-2. [pdf]

 

Page 5 of 5

  • 1
  • 2
  • 3
  • 4
  • 5

Graz University of Technology
Institute of Biomechanics

Stremayrgasse 16/2
8010 Graz, Austria

E-mail: holzapfel@tugraz.at
Phone: +43 (0)316 873 35500

Deadline for registration is
August 20, 2025

Contact:
E-mail: biomech@tugraz.at
Phone: +43 (0)316 873 35501

 

 

Summer School 2025
Flyer download

 

 

  • Past Events
  • Imprint
  • Gallery
  • Privacy policy
  • Imprint
© 2020 - 2025 Summer School - biomech.tugraz.at, website by PHONGJIM | Back to top
To Skip Menü in Header