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Abstract. Choosing the best constitutive model and the right set of model parameters is at the heart of
continuum mechanics. For decades, the gold standard in constitutive modeling has been to first select
a model and then fit its parameters to data. However, the success of this approach is highly dependent
on user experience and personal preference. Here we propose a new method that simultaneously and
fully autonomously discovers the best model and parameters to explain experimental data. Mathe-
matically, the model finding is translated into a complex non-convex optimization problem. We solve
this problem by formulating it as a neural network, and leveraging the success, robustness, and sta-
bility of the optimization tools developed in classical neural network modeling. Instead of using a
classical off-the-shelf neural network, we design a new family of Constitutive Artificial Neural Net-
works with activation functions that feature popular constitutive models and parameters that have
a clear physical interpretation. Our new network inherently satisfies general kinematic, thermody-
namic, and physical constraints and trains robustly, even with sparse data. We illustrate its potential
for biaxial extension experiments on skin and demonstrate that the majority of network weights train
to zero, while the small subset of non-zero weights defines the discovered model. Unlike classical
network weights, these weights are physically interpretable and translate naturally into engineering
parameters and microstructural features such as stiffness and fiber orientation. Our results suggest
that Constitutive Artificial Neural Networks enable automated model, parameter, and experiment
discovery and could initiate a paradigm shift in constitutive modeling, from user-defined to auto-
mated model selection and parameterization. Our source code, data, and examples are available at
https://github.com/LivingMatterLab/CANN.
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1 Motivation

Neural networks are gaining increased popularity in the computational mechanics community and are
increasingly used as function approximators in constitutive modeling [1]. Neural networks learn func-
tions from data by minimizing a loss function [38]. In constitutive modeling, the function is a model
for the stress, the data are measured stress-strain pairs, and the loss function is the mean squared er-
ror between model and data [14]. Classical neural networks have evolved into a powerful technology
to interpolate or describe big data; however, they cannot extrapolate or predict beyond their training
regime [35]. They are an excellent choice when we have no information about the underlying data,
but they totally ignore our expert knowledge, anyone can actually violate kinematic, thermodynamic,
or physical constraints [43]. In the materials physics community, this has raised the question of how
best to integrate neural networks and constitutive modeling and ideally combine the best features of
both [62].

Two successful but fundamentally different strategies have emerged to integrate physical knowledge
into network models: Physics-Informed Neural Networks that add physical equations as additional
constraints to the loss function [20]; and Constitutive Artificial Neural Networks that explicitly modify
the network input, output, and architecture to tightly incorporate physical constraints into the network
design [31]. The former is broadly applicable to any type of ordinary [32] or partial [44] differential
equations, while the latter is specifically tailored to constitutive equations [31]. In fact, almost two
decades ago, the first constitutive neural network with strain invariants as input, free-energy func-
tions as output, and a single hidden layer with logistic activation functions in between was proposed
for rubber-like materials [48]. It has recently regained attention in the constitutive modeling com-
munity [63], with applications for planing rubber sheets [31], sheets with holes [54], entire tires [48],
parachute deployment [2], and plastic surgery [51]. An inherent limitation of all these success stories
is that their neural network parameters do not have a clear intuitive interpretation and teach us little
to nothing about the underlying physics [21]. This raises the question of whether and how we can
use our expertise in constitutive modeling to design a new family of Constitutive Artificial Neural
Networks that not only approximate stresses from data [14], but rather discover the best constitutive
model and meaningful model parameters to explain experimental data. Here, we will prototype this
idea for transversely isotropic composite materials with experimental data from skin.

The skin is the largest organ in our body and our interface to the outside world. Its stiffness is tightly
regulated to protect the underlying tissues from environmental insults while allowing for movement
and interaction with objects ranging from clothes to medical prostheses. The first biomechanical study
of skin dates back to 1861, when the Austrian anatomist Karl Langer punctured circular holes in the
human cadaver skin and discovered its anisotropy as the circular punches turned into ellipsoidal
shapes [22]. This experiment produced the classic Langer lines, topological lines parallel to the natural
orientation of collagen fibers in the dermis that have important implications in plastic and reconstruc-
tive surgery [8,61]. However, it was not until more than 70 years later that scientists fully character-
ized the three-dimensional response of the skin using a custom-designed biaxial extension system [23].
These experiments revealed a transversely isotropic behavior with a stiff response parallel to Langer’s
lines and a soft response perpendicular to it [24] and the characteristic stretch-stiffening [25] that we
now commonly associate with soft collagenous tissues [18]. Based on these pioneering experiments,
different experimental protocols have been proposed [19,29, 30, 59] for probing the skin under uni-
aixal tension [41], biaxial extension [24], or torsion [5]. A legitimate question, particularly with regard
to constitutive modeling, is which experiment is best suited to identifying its parameters [27], or, in
view of model finding, which experiment provides the richest data for training neural networks for
the skin [34]. Our intuition suggests that uniaxial tension or strip tests parallel and perpendicular to
Langer’s lines should provide the best insight into the constitutive behavior of the skin [41]. But is this
really true, and if so, how can we formally quantify it?
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In parallel to the numerous experiments to characterize the nonlinear transversely isotropic response
of skin, a long list of constitutive models has been developed for this important tissue throughout the
past fifty years. Yet, there is no definitive choice of constitutive equation that is best suited for a partic-
ular dataset, no universal model that can be used for different animal species, and no standard testing
protocol that can guarantee robust model training. The general idea of this manuscript is to prototype
a new method to autonomously discover the best model, parameters, and experiment to characterize
the constitutive behavior of the skin. For this purpose, we revisit the basics of constitutive modeling in
Section 2 and demonstrate in Section 3 how this expert knowledge can be integrated into a new family
of Constitutive Artificial Neural Networks. In the Section 4, we briefly review the homogeneous de-
formation mode of biaxial extension and introduce the data we use to train our model in Section 5. We
discuss our results, limitations, and future directions in Section 6 and close with a brief conclusion in
Section 7.

2 Constitutive modeling

To characterize the deformation of a test sample, we introduce the deformation map ¢ that maps ma-
terial particles X from the undeformed configuration to particles, x = ¢(X), in the deformed config-
uration [3, 18]. The gradient of the deformation map ¢ with respect to the undeformed coordinates X
defines the deformation gradient F with the Jacobian ],

F=Vxo with J = det(F) > 0. (1)

Multiplying F with its transpose F' from the left or the right introduces the right and left Cauchy-
Green tensors C = F'- F and b = F - F!, respectively. In the undeformed state, all three tensors are
identical to the unit tensor, F = I, C = I, and b = I, and the Jacobian is one, | = 1. A Jacobian smaller
than one, 0 < | < 1, denotes compression and a Jacobian larger than one, 1 < ], denotes extension.

A transversely isotropic material is characterized through the pronounced direction ny with unit length
|| no || = 1in the reference configuration, the pronounced direction n = F - ng in the deformed configu-
ration, and the associated structure tensor N = ng ® ny. We characterize its deformation state through
the three principal invariants I, I, I3, and two additional invariants I; and I5 [49],

I, = [F*-F]: 1 orl = 2F

L = Y[—[F F]:[FF| orlh = 2[I,F—F-F' F]

I; = det(Ft*-F)=]J? with  orlz= 2 Ft (2)
I, = [F-F]:N orly= 2F-N

Is = [F*-F]*>:N Opls= F-[N-[F'-F]+[Ft-F]-NJ.

In the undeformed state, F = I, and the five invariants are equal to three and one, I; = 3, I, = 3,
13:1,14:1andl5:1.

A perfectly incompressible material is characterized through a constant Jacobian equal to one, I = J? = 1.
Accordingly, its set of invariants reduces to four, I, I, I, I5.

Next, we introduce the constitutive equation, a tensor-valued tensor function that defines the relation
between the Piola or nominal stress P, the force df per undeformed area dA, and the deformation
gradient F [18,56],

P =P(F) where P =limgy o i{; . 3)
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Here, instead of approximating the tensor-valued tensor function P(F) directly through a classical
neural network [14,36,47], our objective is to design a Constitutive Artificial Neural Network that lim-
its the space of admissible functions by a priori guaranteeing common thermodynamic and physical
constraints:

First, we consider thermodynamic consistency and imply that the Piola stress P follows from the second
law of thermodynamics, D > 0 (D stands for dissipation), as the derivative of the free-energy function
¢ with respect to the deformation gradient F [57],

oy (F) L , . oy(F) .
—_ 7 e N — > = —— .
P 5F from D=P:F—¢(F)>0 with ¢ 5F F (4)
Second, we imply material objectivity [42] to ensure that our constitutive equation does not depend on

the external frame of reference by requiring that the free energy ¥ is a function of the right Cauchy-
Green tensor, C = Ft- F [56],

p_ (C) _ap(C) aC _, . ay(C)

oF oC ~oF oC ®)

Third, we consider material symmetry for transversely isotropic materials by ensuring that the free en-
ergy ¢ only depends on the five invariants from eq. (2) [18],

p_ bl ls) _ 9poh  9yoh  opdl  dyol Ayl
N oF 04 OF 0L oF 0I30F 09I, 0F 0I5 dF

(6)

Fourth, we assume perfect incompressibility such that the third invariant remains constant, Iy = 1 =
const., and we correct the free-energy function by a pressure term, —p F~!, where p = —% P:F
is the hydrostatic pressure, an additional unknown that we typically determine from the boundary
conditions,

~op(L, b, It Is) ¢ _0Yoly  0YdlL  JPadly OJyPadls —t
P==""%F PE = 9noF Tanor TanoF Taor PF @
Fifth, we ensure polyconvexity [4] by considering a special subclass of free-energy functions i, which
we can express as the sum of polyconvex subfunctions, ¢, ¢, {4, P5, of each invariant [12,16], such
that the stresses take the following additive form,

_pioh | 0yadl | 00l 9ysdls

P_aTlaP ol, OF ' 9, OF ' 0I5 OF

pF" where ¢ =1(h)+y2(R)+ pa(ls) +¢s5(5) -
8)
With the derivatives of the invariants from eq. (2), this results in the following explicit from,

_ 91 2| o 992 t 9Py 9Ps . . I
P_2H811+11812]P 2812PP F+aI4F N+815 [F-N-F'-F+F-F-F-N||—pF".
)

Finally, we consider physically reasonable constitutive restrictions [3], and ensure that the free energy
P is non-negative for all deformation states, (F) > 0 for all F; zero in the reference configuration,
¢ (F) = 0 at F = I; and infinite for infinite compression or infinite expansion, ¢(F) — oo for | — 0 or
J — co.
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Figure 1: Constitutive Artificial Neural Network. Transversely isotropic, perfectly incompressible, Constitutive Artificial
Neural Network with two hidden layers for approximating the single scalar-valued free-energy function (I, I, Iy, Is) as a
function of the invariants of the deformation gradient F using sixteen terms. The first layer generates powers (o) and (o)2
of the network input and the second layer applies the identity (o) and exponential functions (exp(c)) to these powers. The
networks are not fully connected by design to satisfy the condition of polyconvexity a priori.

3 Constitutive Artificial Neural Networks

We now propose a new family of Constitutive Artificial Neural Networks that satisfy the condi-
tions of thermodynamic consistency, material objectivity, material symmetry, perfect incompressibility,
polyconvexity, and physical restrictions by design. Figure 1 illustrates an example of a transversely
isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers and
four and eight nodes. The first layer generates powers (o) and (o)?2 of the network input and the second
layer applies the identity, (o) and the exponential function (exp(o)) to these powers. The constitutive
equation of this networks takes the following explicit form, i.e.

Y =wyy wiy [l —3]+wan [exp(wip [ —3]) — 14wz wis [I1 — 3> +was [exp(wis [l —3]%) —1]
+was wis [ —3]+wae [exp(wie [l —3]) — 1] 4+wyy wiy [l —3*+wag [exp(wig [l —3]*) —1]
+ w9 wiy [Is — 1] 4+wa0[exp(wio[la — 1)) — 1 4+woa1 w11 [Is — 12 +wo 2 [exp(wijz [l — 1]%) — 1]
+ wy 13 w113 [Is — 1] +wo4 [exp(wi4[ls — 1)) — 1] +wo15w1,15 [Is — 1]* +wo 16 [ exp(wiae [I5 — 1]%) — 1],

(10)

corrected by the pressure term ¢ = ¢ — p [J — 1]. Using the second law of thermodynamics, we can
derive an explicit expression for the Piola stress, P = 0y /dF, i.e.

P = [wy1 w1y +wyp wip exp(wip [ —3])+2[L —3][wozwiz + was wia exp(wig [I1 —3]*)] 0L /0F
+ [wys w15 +woe wie exp(wie [ —3])+2[ —3][waywi; + wog wig exp(wig [, —3]*)] 0L/9F
+ [wa9 w19 +wa0wr0exp(wijo[ls — 1)) +2[ Ly — 1][wa11w1 11 +wa 1wy 12exp(wi12 [ Is — 1]%)] 014/ 9F
+ [wo13101,13+ w141 1aexXp( w4 Is — 1)) +2 [ Is — 1] [wa15w1 15 + w216 w1 16exp (w116 [ I5 — 1]%)] 0I5/ F


https://doi.org/10.1101/2022.12.19.520979
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.520979; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(11)
corrected by the pressure term P = P — pF~'. For this particular format, one of the two
weights with odd second indices becomes redundant, and we can reduce the set of network
parameters from 32 to 24, w = [(wi1w21), Wi, Wa2, (W13W23), W14, Waa, (W15W25), Wie, Wae,

(w1,7w2,7), w1,8, W28, (w1,9w2,9), W1,10, W2,10, (wl,n w2,11), w1,12, W2,12, (w1,13 w2,13)/ W1,14, W2,14, (w1,15w2,15),
W1 16, W2,16 |- We learn the network weights w by minimizing a loss function L that penalizes the error
between model and data. We characterize this error as the mean squared error, the Ly-norm of the
difference between the model P(F;) and data P;, divided by the number of training points nym,

Nt
ZHP — P;||*> — min. (12)
ntrni 1

L(w;

We train the neural network by minimizing the loss function (12) and constraining the network weights
to always remain non-negative, w > 0. Instead of implementing this minimization ourselves, we use
the robustness and stability of the optimization tools developed for machine learning. In particular, we
choose the widely used ADAM optimizer, a robust adaptive algorithm for gradient-based first-order
optimization.

4 Biaxial extension tests

To discover the constitutive model for skin, we consider data from biaxial extension tests on rabbit
[24,25] and pig [50,51] skin. We represent skin as a transversally isotropic, perfectly incompressible material
using eq. (8),

_opioh | yadh | Opsdls | ysdls

~ 0l OF '~ 9l OF = 9l; OF = 0I5 OF ’ (13)

where p denotes the hydrostatic pressure, which we determine from the zero-thickness-stress condi-
tion. In biaxial extension tests, the skin specimen is stretched in two orthogonal directions, A; > 1 and
Az > 1. From the incompressibility condition, Is = A7 A3 A3 = 1, the stretch in the thickness direction,
Az = (A A2)7! < 1, is uniquely defied through these two stretches. In all experiments, the samples
are mounted with Langer’s lines along one of the stretch directions so that the deformation remains
homogeneous and shear free, and the deformation gradient F and Piola stress P remain diagonal,

F = diag { A1, A2, (MA2) "'} and P = diag{ Pyj, P»,0}. (14)

We use the explicit expressions of the invariants from eq. (2),

L=A2+ A3+ (MAy) 2 Iy = A3cos®a + /\251n % (15)
L = (/\1)&2)2 + AIZ + /\;2 Is = /\4COS o+ /\ZSIH 14
and their derivatives,
ap11 =2 dlag {)Ll, Aa, ()Ll/\z)_l}
orh=2diag {(MAZ +A1A52), (A2A + A2A0 1Y), (MA T+ A7 TA) ) 16)

orly=2diag {Acos’a, Apsin?a, 0}
orls=2diag {ZAi’coszuc, ZAgsinz(x, 0}
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to determine the pressure p from the zero-thickness-stress condition in the third direction,
2 oy 2 2\ oy
P =0 th = —— = =+ =] = 17
» wPe oo T ()@ ” A§> EJA A7)

Equation (13) then provides explicit analytical expressions for the nominal stresses P;; and P»; in terms
of the stretches A; and A5,

1\ oy ) 1 1 e oy s
Py=2 (A — L= 2 1 MA —_— - - — 2A 4)\ =
11 < 1 /\%/\%> gl + ( 1 2+)\1/\§ /\% /\% 312 + cos? “814 + cos? a815
1\ dp 2 1 1 1\dp 1!’4 9P
Py =2 (A, — 2 ( A2Apt — 21, 423 b
2 < 2 A%Ag) o < 12+ Ay A2 A§> o sina 7" + 4Azsin’ oL
(18)

We compare the stress-stretch relations (18) with the very first reported biaxial extension experiments
on the skin [24, 25] from almost half a century ago. These experiments include both strip-x and
strip-y tests and biaxial extension tests on square rabbit skin samples with an average initial area
of 35 x 35mm? and an average thickness of 1.2mm. For the strip tests, the skin samples are ei-
ther stretched in the x-direction, A; > 1.000, with the y-direction fixed, A, = 1.000, or vice versa,
resulting in two pairs of the individual datasets {A1, P11} and {Ay, P }. For the biaxial tests, the
samples are stretched in the x-direction, A; > 1.0, at four constant stretch levels in the y-direction,
Ap = 1.000,1.087,1.235,1.415 = const., resulting in four triplets of datasets {A1, P11, P }. Table 1 sum-
marizes discrete data pairs and triplets from the reported rabbit skin experiments [24,25].

Table 1: Strip-x, strip-y, and biaxial extension data for rabbit skin. Skin samples are gradually stretched in one direction,
while stretching is fixed in the orthogonal direction. The reported forces are converted in nominal stresses P;; and Py, for
square 35 x 35 mm? samples with a thickness of 1.2 mm [24, 25].

rabbit rabbit rabbit rabbit rabbit rabbit
strip-x strip-y biaxial biaxial biaxial biaxial
[ A, =1.000 [ A;=1.000 T A, = 1.000 [ Ay =1.087 I Ay =1.235 | Ay = 1.415
Al Py Ag D A Piq Py A Py Py A Piq Py Al Py D

[] | [kPa] || [-] | [kPa] || [-] | [kPa] | [kPa] [[] | [kPa] | [kPa] || [-] | [kPa] | [kPa] || [-] | [kPa] | [kPa]

1.000 [ 0.00 1.000 [ 0.00 1.000 [ 0.00 0.00 0.000 [ 0.00 0.00 [[ 0.950 [ 0.00 0.00 || 0.820 | 0.00 0.00
1.100 | 0.04 || 1.100 | 0.16 1.100 | 0.13 0.09 0.036 | 0.34 0.08 || 1.000 | 0.05 0.34 || 0.900 | 0.10 0.86

1941 | 7.01 1.521 | 10.51 || 2.000 | 10.37 | 2.80 7.851 8.17 3.50 1.785 | 9.02 8.17 1482 | 6.14 | 11.68
1.943 | 9.34 1.523 | 11.68 || 2.013 | 11.88 | 3.39 10.064 | 9.34 4.67 1.790 | 10.17 | 9.34 1489 | 6.57 | 12.84
1.948 | 11.68 || 1.526 | 12.84 || 2.021 | 13.28 | 3.85 12.156 | 11.68 | 5.84 1.800 | 12.15 | 11.68 || 1.494 | 6.94 | 14.01
1.950 | 14.78 || 1.528 | 14.78 || 2.023 | 14.76 | 4.32 14.642 | 1354 | 6.77 1.806 | 1448 | 13.54 || 1.496 | 7.24 | 14.59

Next, we translate the nominal stresses (18) into the true stress 011 and 02, i.e.

o1 =2 <A%—1> %1 +2 </\%A% A ) %% + 2 A%cos (xﬂ + 4 Ajcos zxﬂ

A2A2 ) oL dlp dly oI5 (19)
L\ 9 2,2 92 oYy 95
0 =2 <A2 A2A2> ol + 2 </\1)‘2 Az ol + 2 Adsin? txa— + 4 A3sin? oc— .


https://doi.org/10.1101/2022.12.19.520979
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.520979; this version posted December 20, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

We compare the stress-stretch relations (19) with recent biaxial extension experiments on pig skin [50,
51]. These experiments include five sets of biaxial extension tests with prescribed stretch pairs, strip-x
with A, = 1.000, off-x with A, = /A1, equi-biaxial with A, = Ay, off-y with Ay = /A,, and strip-y
with Ay = 1.000. They provide five triplets of datasets, {A1, 011,022} or {A2, 011,02}, for which the
second stretch A, or Aj is either kept constant or increased as a function of A; or A, such that the
maximum principal stretch is inclined at angles of 90.0°,67.59,45.09,22.59,0.0° towards the collagen
fiber direction. Table 2 summarizes discrete data triplets from the pig skin experiments [50, 51].

Table 2: Biaxial extension data for pig skin. Skin samples are gradually stretched in two orthogonal directions. The
ratio between the two stretches varies for all five experiments, such that the principal stretch axis is inclined by angles of

90.0%,67.59,45.0°,22.59,0.0° in the collagen fiber orientation. Stresses are reported as true stresses o1 and oy, [50,51].

pig pig pig pig pig
strip-x off-x biaxial off-y strip-y
| Ay = 1.000 | Ay =M | M =X | M=VA | A1 = 1.000

Al o1y 02 A o1y 0 A A | o 0 Ao o 0 Ay o1 7

[-1 [MPa] | [MPa] [-1 [MPa] | [MPa] [-1 [MPa] | [MPa] [-1 [MPa] | [MPa] [-] [MPa] | [MPa]
1.000 [ 0.000 | 0.000 [[ 1.000 [ 0.000 | 0.000 || 1.000 [ 0.000 | 0.000 [[ 1.000 [ 0.000 | 0.000 [[ 1.000 | 0.000 | 0.000
1.014 | 0.000 | 0.000 || 1.011 | 0.000 | 0.000 || 1.008 | 0.000 | 0.000 || 1.011 | 0.000 | 0.000 || 1.010 | 0.002 | 0.001
1.026 | 0.000 | 0.001 || 1.022 | 0.002 | 0.003 || 1.017 | 0.003 | 0.001 || 1.019 | 0.001 | 0.001 | 1.018 | 0.003 | 0.001
1.041 | 0.001 | 0.000 || 1.033 | 0.004 | 0.006 || 1.025 | 0.006 | 0.006 | 1.030 | 0.003 | 0.006 | 1.029 | 0.005 | 0.005
1.056 | 0.004 | 0.003 || 1.044 | 0.006 | 0.012 || 1.032 | 0.007 | 0.011 || 1.041 | 0.006 | 0.013 | 1.039 | 0.005 | 0.010
1.068 | 0.004 | 0.005 || 1.055 | 0.010 | 0.017 || 1.042 | 0.015 | 0.019 | 1.052 | 0.007 | 0.019 | 1.049 | 0.007 | 0.018
1.083 | 0.012 | 0.007 || 1.066 | 0.018 | 0.025 || 1.049 | 0.023 | 0.037 || 1.062 | 0.010 | 0.028 || 1.058 | 0.013 | 0.030
1.099 | 0.021 | 0.015 || 1.078 | 0.024 | 0.038 || 1.057 | 0.038 | 0.054 | 1.073 | 0.019 | 0.047 | 1.068 | 0.019 | 0.049
1.112 | 0.026 | 0.019 || 1.089 | 0.039 | 0.058 || 1.067 | 0.055 | 0.088 | 1.084 | 0.024 | 0.076 | 1.079 | 0.023 | 0.075
1.127 | 0.048 | 0.030 || 1.101 | 0.057 | 0.088 || 1.075 | 0.077 | 0.125 || 1.096 | 0.038 | 0.118 | 1.090 | 0.034 | 0.110
1.144 | 0.074 | 0.044 || 1.113 | 0.088 | 0.116 || 1.083 | 0.107 | 0.169 | 1.105 | 0.049 | 0.156 | 1.099 | 0.048 | 0.150
1.157 | 0.103 | 0.058 || 1.124 | 0.121 | 0.154 || 1.093 | 0.148 | 0.234 || 1.117 | 0.069 | 0.221 | 1.109 | 0.057 | 0.206
1.174 | 0.155 | 0.080 || 1.137 | 0.160 | 0.195 || 1.101 | 0.186 | 0.300 || 1.129 | 0.091 | 0.297 | 1.121 | 0.073 | 0.283
1.190 | 0.222 | 0.102 || 1.149 | 0.209 | 0.244 || 1.109 | 0.235 | 0.382 || 1.141 | 0.118 | 0.394 | 1.132 | 0.089 | 0.373
1.204 | 0.300 | 0.131 || 1.161 | 0.264 | 0.298 || 1.119 | 0.298 | 0.493 | 1.151 | 0.147 | 0.493 || 1.141 | 0.111 | 0471
1.221 | 0413 | 0.167 || 1.174 | 0.335 | 0.359 || 1.127 | 0.365 | 0.604 | 1.163 | 0.185 | 0.635 || 1.152 | 0.135 | 0.609
5 Results

We train our Constitutive Artificial Neural Network from Figure 1 with the biaxial extension data from
Tables 1 and 2, either individually for each dataset or simultaneously for all datasets combined. For
each training case, in every direction, we compare the experimentally reported stress-stretch data to
the discovered stress-stretch model and use the other cases for testing. We report the correlation coef-
ficients R? as an indicator for the goodness-of-fit for both train and test data.

For insufficiently rich training data, model discovery is non-unique. Figure 2 shows the discov-
ered models for the strip-x and strip-y data of rabbit skin in Table 1. The four columns show four
different models for four different initial conditions; the two rows show the stress-stretch relations in the
x— and y—directions. First and foremost, the neural network is able to discover models that explain
the data with R? values of the order of R?> = 0.85 and above, except for the last column. As a general
trend, the network discovers free-energy functions with pairs of two terms: one term is a function of
one of the isotropic invariants, I; or I, shown in the hot reddish colors, and the other is a function of
one of the anisotropic invariants, I or Is, shown in the cold bluish colors. Interestingly, the model only
discovers pairs of quadratic exponential terms, exp([I; — 3]?) and exp([I5 — 3]?) in the first and fourth
column, exp([I; — 3]?) and exp([Is — 3]?) in the second column, exp([I> — 3]?) and exp([I5s — 3]?) in the
third column, while all linear, quadratic, and linear exponential terms train to zero. We conclude that
for training with a set of strip-x and strip-y data, the network is able to discover models that approx-
imate the data well. However, model detection is ambiguous and sensitive to network initialization.
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Figure 2: Rabbit skin strip-x and strip-y data and discovered model. Nominal stresses Py and Py, as functions of
stretches Ay at Ay = 1.000 and Ay at A, = 1.000 for the transversely isotropic, perfectly incompressible Constitutive Artificial
Neural Network with two hidden layers and 16 nodes from Figure 1, for training with different initial conditions. Dots illustrate
the strip-x and strip-y data of rabbit skin [24] from Table 1; color-coded areas highlight the 16 contributions to the discovered
stress function according to Figure 1.

This suggests that training with a single set of strip-x and strip-y data, with pairs of {Ay, Pxx} and
{Ay, Py} from two independent experiments provides insufficient information for the discovery of
unique models. To explore whether this ambiguity is inherent to the neural network itself or is simply
due to insufficiently rich training data, we now train the model with multiple datasets from biaxial
extension tests.

For sufficiently rich training data, the network robustly discovers unique models. Figure 3 illus-
trates the discovered model for the biaxial extension data of rabbit skin in Table 1. The four columns
show the discovered model for four different levels of lateral stretch, A,, = 1.000, 1.087,1.235, 1.415, for
training with each dataset individually; the two rows show the nominal stresses Py, and Py, for increas-
ing stretches A,. Similar to the previous example, the neural network is generally able to discover a
model that explains the data reasonably well, with R? values on the order of R> = 0.75 and above.
Interestingly, for the four sets of biaxial extension data, even when trained on only one dataset, the
neural network robustly discovers the same pair of terms: the quadratic exponential terms of the first
invariant, exp([I; — 3]?) in light red, and of the the fourth invariant, exp([I; — 3]?) in turquoise. In the
first column, the stretch perpendicular to the fiber direction, Ay = 2.0, is up to twice as large as the
stretch parallel to the fiber direction, A, = 1.0, and the behavior of the sample is dominated by the
isotropic response of the light red exp([l; — 3]?) term. With increasing fiber stretch, the anisotropic
contribution of the fibers increases from the left to the right column. In the fourth column, the stretch
perpendicular to the fiber direction, A, = 1.5, is almost identical to the stretch parallel to the fiber
direction, A, = 1.4, and the behavior of the sample is dominated by the anisotropic response of the
turquoise exp([Iy — 3]%) term. Interestingly, the second and fifth invariants I and Is do not contribute
to the discovered model, nor do the linear, quadratic, and linear exponential terms. From the robust
activation of the same two terms across all datasets, we conclude that even a single individual set
of biaxial training data with data triples of {Ay, Pyy, Pyy} allows for a more robust training than a set
of strip-x and strip-y data, with pairs of {Ay, Py} and {Ay, Py, } from two independent experiments.
While the parameter values are different for each set of training data, the set of active parameters is the same
across all four datasets and defines the discovered model. To check the robustness of the model findin,
we now train our neural network simultaneously with all four biaxial extension datasets combined.
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Figure 3: Rabbit skin biaxial extension data and discovered model. Nominal stresses Py, and Py, as functions of the
lateral stretch A, at A, = 1.000,1.087,1.235,1.415 for the transversely isotropic, perfectly incompressible Constitutive Artificial
Neural Network with two hidden layers and 16 nodes from Figure 1, trained with each dataset individually. Dots illustrate
the biaxial extension data of rabbit skin [24] from Table 1; color-coded areas highlight the 16 contributions to the discovered
stress function according to Figure 1.

The network autonomously discovers a two-term quadratic exponential model for rabbit skin.
Figure 4 illustrates the discovered model for the biaxial extension data of rabbit skin in Table 1. The
four columns show the response of the discovered model for four different levels of lateral stretch,
Ay = 1.000,1.087,1.235,1.415, but now for training with all four datasets simultaneously; the two rows
show the nominal stresses Py, and P,y for increasing stretches A,. When trained with four datasets of
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Figure 4: Rabbit skin biaxial extension data and discovered model. Nominal stresses Py, and Py, as functions of the
stretch Ay at fixed A, = 1.000,1.087,1.235,1.415 for the transversely isotropic, perfectly incompressible Constitutive Artificial
Neural Network with two hidden layers and 16 nodes from Figure 1, trained with all four datasets simultaneously. Dots illustrate
the biaxial extension data of rabbit skin [24] from Table 1; color-coded areas highlight the 16 contributions to the discovered
stress function according to Figure 1 for training with all four datasets combined.

triples of {Ay, Pyx, Py}, the network robustly discovers a single unique model and parameter set. The
model and parameters approximate the data well and are insensitive to varying initial conditions. The
network consistently discovers a two-term model for rabbit skin in terms of quadratic exponentials of
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the first and fourth invariants I; and Iy, i.e.

Iprabbit(h/ 14) _ %% [eXp(bl[h _ 3]2) _ 1] + %5—4 [exp(b4[14 — 1]2) _ 1] —-p [] - 1] ’ (20)
1 4

from which we can derive the nominal stress for rabbit skin, P = d¢/dF, as
PP (1 1) = ay [, — 3] [exp(by[I1 —3]%) — 1) F+ag [Is — 1] [exp(by[Is — 1)?) =1 n@mny — p Ft, (21)

where n = F - ng and ny denote the deformed and undeformed collagen fiber directions, respectively.
The network robustly discovers the same set of four non-zero network weights, w1 4, w2 4, W1,12, 2,12,
that translate into four physically interpretable parameters with well-defined physical units, the stiffness-
like parameters a1 = 2wy 4w» 4 and ay = 2 wy,10w3 12 and the unit-less exponential coefficients by = w4
and b4 = W1,12-

rabbit skin - x-stress rabbit skin - y-stress

5 =100 15 =100
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Figure 5: Rabbit skin biaxial extension tests and discovered model. Nominal stresses Py, and Py, as a function of stretch
Ay at fixed A, = 1.000,1.087,1.235,1.415, from red to blue, for the transversely isotropic, perfectly incompressible Constitutive
Artificial Neural Network with two hidden layers and 16 nodes from Figure 1, trained with all four datasets simultaneously. Dots
illustrate the biaxial extension data of rabbit skin [24] from Table 1; colored curves highlight the discovered stress functions.

Figure 5 summarizes the experimentally reported and computationally discovered stress-stretch rela-
tions for the biaxial extension of rabbit skin. The red curves, associated with the smallest fiber stretch
of A, = 1.000, are dominated by the isotropic response of the tissue and display the softest response.
Increasing the fiber stretch from Ay = 1.000 via Ay, = 1.087 and Ay = 1235t0 Ay = 1415, from red to
dark blue, gradually activates the anisotropic response of the collagen fibers and the stresses increase.
The blue curves associated with the largest fiber stretch of A, = 1.415 are dominated by the anisotropic
response of the fibers and display the stiffest response in both directions. Overall, we conclude that
the discovered two-term stress-stretch relation (21) provides a good approximation to the data for both
stresses, in the stretch direction Py, and in the hold direction Py,. The model captures well the char-
acteristic stretch stiffening of soft collagenous tissues with increasing stresses, as soon as the collagen
fibers as the load-carrying structural element take over the main load. To validate the model discovery,
we now train our neural network with a different dataset from biaxial extension experiments on pig
skin.

The network discovers the same two-term model for rabbit and pig skin. Figure 6 illustrates the
discovered model for the biaxial extension data of pig skin in Table 2. The four columns show the
response of the discovered model for the strip-x and strip-y, off-x, equi-biaxial, and off-y tests; the two
rows show the true stresses oy, and 0y, as functions of the stretches A, and A,,. When trained with the
five stress-stretch pairs {Ay, Pxy} and {A,, Py} individually the network robustly discovers the same
model for each dataset. The model is insensitive to varying initial conditions and approximates the
data well with R? values on the order of R> = 0.92 and above. Remarkably, even for a completely dif-
ferent dataset, from different species, tested with a different protocol, the network discovers the same
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Figure 6: Pig skin biaxial extension data and discovered model. True stresses oyx and oy, as functions of stretches A,
and Ay for the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers
and 16 nodes from Figure 1, trained with each dataset individually. Dots illustrate the biaxial extension data of pig skin [51]
from Table 2; color-coded areas highlight the 16 contributions to the discovered stress function according to Figure 1.

model for pig skin and for rabbit skin half a century later with much higher precision: a two-term
model in terms of quadratic exponential first and fourth invariants I; and I;. The stress contribu-
tions to oy, and Ty in the two rows clearly visualize the effect of the collagen fibers: the oy, stresses
perpendicular to the fiber direction only contain the light red quadratic exponential isotropic I; term,
while the 0y, stresses parallel to the fiber direction also contain the turquoise quadratic exponential
anisotropic I term. For all five datasets, only these two terms are activated, while the weights of the
other 14 terms train to zero. While the parameter values are different for each set of training data, the
set of active parameters is the same across all five datasets and defines the discovered model. Table 3
summarizes the non-zero weights w 4, Wy 4, W1,12, W2 12, the resulting stiffness-like parameters, 2; and
a4, and exponential coefficients, b; and b4, and the goodness-of-fit, R2 and Rﬁ, for individual training
with the strip-x, off-x, equi-biaxial, off-y, and strip-y tests.

The network simultaneously discovers both a unique model and parameter set. Figure 7 con-
firms the robust model discovery, now for training with all five datasets simultaneously. The network
discovers the same two-term model for pig skin as in the previous example for rabbit skin, with the
same free-energy function as in eq. (20), i.e.

YPE(h, 1) = 2 T [exp(bill—3P) — 1] 4 3 2 [exp(balls — 1) ~ 1]~ p[] ~1], 22)
1 4

from which we can derive the true stress, ¢ = 1/J9¢/0F - F* = 1/] P - F', similar to eq. (21), i.e.
oP8(1y, 1) = ay [I; — 3] [exp(1[I1 —3]%) = 1] b+ ag [, — 1] [exp(ba[ls — 1]*) = 1]n-n—pI, (23)

where n = F - ny denotes the deformed collagen fiber direction. Simultaneous training with all five
combined datasets confirms that the second and fifth invariants I and Is do not contribute to the dis-
covered model, nor do the linear, quadratic, and linear exponential terms. In contrast to the individual
training, the simultaneous training results in a single unique set of parameter values that best explain all
five experiments combined. Naturally, simultaneous training slightly reduces the goodness-of-fit R?
compared to individual training. Importantly, the four non-zero weights of the discovered model,
w4 = 0.8207, wp 4 = 0.8097 MPa, w12 = 0.3921, wy 12 = 0.3388 MPa, naturally translate into as set
of meaningful, physically interpretable parameters, a1 = 2wj4w14 = 1.3291MPa, by = w14 = 0.8207,
ay = 2wy, 10w1,12 = 0.2656MPa, and by = wq,12 = 0.3921 with real physical units. Table 3 compares

12


https://doi.org/10.1101/2022.12.19.520979
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.520979; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 3: Pig skin parameters from biaxial extension tests. Discovered material parameters for training with strip-x, off-x,
equi-biaxial, off-y, strip-y tests from Table 2, trained with each dataset individually, parameter means, and trained with all five
datasets simultaneously. Summary of the four non-zero weights wy 4, wy 4, w1 12, Wy 12; resulting stiffness-like parameters a;

and a4 and exponential coefficients b; and b,; and goodness-of-fit R2 and Rﬁ.

pig pig pig_ pig pig pig pig
strip-x off-x equi-biax off-y strip-y mean all
y [ Ay =100 Ay =VAr [ Ay = A [ A= VA, [ Ax =100 | I
w14 [-1 0.8085 0.7888 0.9400 0.8052 1.3075 0.9300 0.8207
wy4 [MPa] 0.7938 0.7770 0.9205 0.7872 1.3004 0.9158 0.8097
w2 [ 0.0006 0.3266 0.3332 0.3779 0.3429 0.2762 0.3921
wy 12 [MPa] 0.0011 0.3226 0.3067 0.2832 0.2809 0.2389 0.3388
a1 [MPa] 1.2837 1.2257 1.7304 1.2677 3.4004 1.7816 1.3291
by [-] 0.8085 0.7888 0.9400 0.8052 1.3075 0.9300 0.8207
ay [MPa] 0.0000 0.2107 0.2044 0.2140 0.1927 0.1644 0.2656
by [-] 0.0006 0.3266 0.3332 0.3779 0.3429 0.2762 0.3921
R% [-] 0.9945 0.9404 0.9969 0.9955 0.9670 - -
R?, [-1 0.9433 0.9265 0.9678 0.9761 0.9764 - -
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Figure 7: Pig skin biaxial extension data and discovered model. True stresses o, and oy, as functions of the stretches
Ax and Ay for the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers
and 16 nodes from Figure 1, trained with all five datasets simultaneously. Dots illustrate the biaxial extension data of pig
skin [51] from Table 2; color-coded areas highlight the 16 contributions to the discovered stress function according to Figure 1.

the discovered non-zero weights w1 4, w24, W1 12, W2,12, the resulting stiffness-like parameters a; and
a4 and exponential coefficients b; and by, and goodness-of-fit R2 and Rﬁ for simultaneous training
to the means of their counterparts for individual training. Figure 8 summarizes the experimentally
reported and computationally discovered stress-stretch relations for biaxial extension of pig skin. The
red curves of the strip-x test with A, = 1.000 are dominated by the isotropic response of the tissue and
display the softest response. Increasing the fiber stretch from A, = 1.000 via A, = A}/2, A, = A,, and
Ay = AZ, to the strip-y test with A, = 1.000, from red to dark blue, gradually activates the anisotropic
response of the collagen fibers and the stresses increase. The dark blue curves are dominated by
the anisotropic response of the fibers and display the stiffest response. Similar to rabbit skin, the
discovered two-term stress-stretch relation for pig skin (23) provides a good approximation of the
data for the stresses in both oy, and ¢y, directions. We conclude that the discovered model is not only
well-suitable for rabbit skin, but also for pig skin.

The network not only discovers the best model and parameters, but also the best experiment.
Figure 9 visualizes the coefficients of correlation for the pig skin experiments. The six columns
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Figure 8: Pig skin biaxial extension tests and discovered model. True stresses oy and oy, as functions of stretches A
and Ay for the transversely isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers
and 16 nodes from Figure 1, trained with all five dataset simultaneously. Dots illustrate the biaxial extension strip-x, off-x,
equibiaxial, off-y, strip-y data of pig skin [51] from Table 2; colored curves highlight the discovered stress functions.

correspond to the six sets of training data, strip-x, off-x, equibiaxial, off-y, trip-y, and all experiments
combined; the two rows illustrate the fit in the x— and y—directions. The color-coded bars summarize
the R? values from each experiment; the highlighted bar indicates the goodness-of-fit to the training

data, R%_; , while all other bars indicate the goodness-of-fit to the test data, R%y. The discovered
train strip-x train off-x train equi-biax train off-y train strip-y train all
R2_,=0.9945 R%,in=0.9404 M R%, =0.9969 M R%, =0.9955 R qin=0.9670
=0.9433 =0.9265 =09678 M R%,=09761 MRZ, =09764

traln traln traln train train

mean(R?) =0.6848 mean(R?) = 0.8423 mean(R?) =0.7823 mean(R?) =0.8510 mean(R?)= 02519 mean(R?) =0.8629
M x-strip off-x M equi-biaxial M off-y W strip-y

Figure 9: Pig skin biaxial extension coefficients of correlation. Coefficients of determination R? for discovered model, with
quadratic exponential terms in the first and fourth invariants, exp([I; — 3]%) and exp([I; — 1]?), trained with the strip-x, off-x,
equibiaxial, off-y, trip-y, and all data of pig skin [51] from Table 2. Color-coded bars highlight the individual experiment. In
each column, one experiment is used as training data and the other four as test data. In the right column, all data are used
as training data.

model clearly trains well, with all but two values well above RZ ;> 0.95. As expected, the strip-x
experiment has no predictive potential for the y—stresses ¢y, and neither does the strip-y experiment
for the x—stresses 0yy, both with RZ, values of zero. At the same time, the off-x, equi-biaxial, and
off-y experiments contain information about both stresses, oy, and 0,y, and provide insight into
both, the isotropic I; term and the anisotropic I; term, where most of the RZ,, values are close to
R%Z, = 0.90. Importantly, comparing the mean coefficient of correlation, mean(R?), across all five
experiments helps us select the experiment with the richest information: the mean coefficient of
correlation is largest for the off-y and off-x experiments with values of mean(R?) = 0.8510 and 0.8423
and smallest for the strip-y experiment with mean(R?) = 0.2519. We conclude that our network can
not only discover the best model and parameters, but also discover the best experiment. In other words,
if we could choose just one experiment, the off-y experiment with A, = A2 would provide the most
complete information about the mechanics of skin.
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The network can discover microstructural features. Skin is a transversely isotropic material with a
pronounced collagen fiber direction. If we do not know the fiber direction a priori, we can discover it
simultaneously with the model and its parameters. We assume that the fibers are oriented at an angle
« to the x-direction such that ny = [cos(«), sin(ff),0]'. Figure 1 of our Constitutive Artificial Neural
Network introduces the fiber angle a as an additional weight wy between the deformation gradient F
and the fourth and fifth invariants, Iy = F-ng®ng- Ftand Is = F'- F - ng @ ng - F* - F. For the rabbit
skin experiments in Table 1, the model discovers a weight of wy = 0.9760 corresponding to an angle of
a = +55.929; for the pig skin experiments in Table 2 the model discovers a weight of wy = 1.5708 cor-
responding to an angle of a = 90.00°. Both values seem reasonable for skin tissue samples taken from
the back of the animals with a pronounced lateral fiber orientation. Intuitively, the rabbit is probably
too small to provide 30 x 30 mm? tissue samples with homogeneous collagen fiber orientations that
could explain why the learned fiber angle deviates from the lateral direction. However, the pig is much
larger and its samples might be more homogeneous with a single unique collagen fiber orientation
along the 90° lateral direction. Overall, we conclude that, given sufficient training data, the network
robustly discovers microstructural features, e.g., distinct collagen fiber directions of soft biological tissues.

6 Discussion

The objective of this study was to design a Constitutive Artificial Neural Network for transversely
isotropic perfectly incompressible materials and to demonstrate its features using the example of skin.
Our design paradigm was to reverse-engineer the network architecture to ensure that the network
satisfies common physical and thermodynamic constraints by design and includes popular consti-
tutive models as special cases. We have shown that a basic set of 16 functional building blocks—
generated from two isotropic and two anisotropic invariants, their first and second powers, and their
exponentials—provides a reasonable basis to characterize this class of materials. To leverage the robust-
ness and stability of optimization tools in neural network modeling, we have integrated these terms
into a neural network with two hidden layers and 32 weights. When the network is trained with
biaxial extension data from the skin, it autonomously discovers a subset of non-zero weights that de-
fine the discovered model while training the majority of the weights to zero. Importantly, in contrast
to classical neural network modeling, the non-zero weights are physically interpretable and translate
naturally into engineering parameters and microstructural features such as shear modulus and fiber
angle. The method not only discovers a unique model and parameter set that best describe the data,
but also autonomously discovers the richest experiment to train itself.

Our discovered model compares well against proposed constitutive models for skin. For more
than half a century scientists have developed constitutive models to characterize the stress-stretch
relation in skin [10, 19, 26, 30, 52,59]. We can classify these models into microstructurally-based and
invariant-based approaches [29]. Our neural network in Figure 1 with the free-energy function in
eq. (10) is a natural generalization of the most popular invariant-based models [33] and provides in-
sight into their functional correlations:

The Lanir model [27], the simplest of all models for transversely isotropic materials, has a free-energy
function that contains an isotropic linear neo-Hookean term [55] of the first invariant [ [; — 3] and an
anisotropic linear term of the fourth invariant [ Iy — 1], i.e.

1 1
p=smlh=3]+5m[lL-1],
scaled by the shear modulus y1 = 2w; 1w, and the fiber stiffness ys = 2w 9wo9. While the Lanir

model captures well the transversely isotropic behavior of skin with stiff collagen fibers embedded in
a soft matrix, this is evident from the experimental stress-stretch curves in Figures 5 and 8. The linear
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neo-Hookean format does not capture the characteristic stretch-stiffening behavior of collagenous tis-
sues [30].

The Weiss model [60] originally designed for ligaments combines the isotropic linear Mooney-Rivlin
terms [40, 45] of the first and second invariant [[; — 3] and [, — 3] with an anisotropic linear expo-
nential Demiray term [11] of the fourth invariant [ I, — 1], i.e.

p=gmlh—3]+plh—3]+alexp((L-1]) ~1],

scaled by the shear moduli, 1 = 2wy 1w>1 and p, = 2w;s5w;5, and the stiffness-like parameter
ay = 2w 10wy,10- While the exponential format of the anisotropic term naturally captures the stretch-
stiffening parallel to the collagen fiber direction, the linear format of the isotropic term does not capture
the stretch-stiffening of the red curves perpendicular to the fiber direction in Figures 5 and 8.

The Groves model [15], a generalization of the Weiss model, combines an isotropic exponential term in
the first invariant [ [; — 3] and an isotropic linear Blatz and Ko term [6] of the second invariant [ I, — 3 |
with an anisotropic linear exponential Demiray term [11] of the fourth invariant [ Iy — 1], i.e.

Y= Z—l [exp(b1[ [ —3]) —1] — %yz [L—3]+ ZA [exp(ba]Is —1]) — 1]
1 4
scaled by the stiffness-like parameters, a1 = 2w w2, Yo = 2w 5wz5, and ag = 2wy 10Wy,10, and the
coefficients by = w1 and by = wy 10. While the exponential format of both the isotropic and anisotropic
terms qualitatively captures the characteristic stretch-stiffening of the skin, the linear dependence in
the exponential term accounts for only moderate stiffening and does not quantitatively capture the
characteristic J-shape, particularly of the blue curves in Figures 5 and 8.

The Holzapfel model [17], combines the isotropic linear neo-Hookean term [55] of the first invariant
[ [ — 3] with an anisotropic quadratic exponential term of the fourth invariant [ I, — 1], i.e.

p=gnlh—3]+3 lew(bll—12)-1],
4

scaled by the shear modulus y = 2wy 1wy 1, the stiffness-like parameter a4 = 2 wy 12w5 12, and the coef-
ficient by = wy,12. With only three parameters and a clear microstructural interpretation, the Holzapfel
model naturally captures the three characteristic features of collagenous tissues, anisotropy, stretch-
stiffening and a strong J-type behavior, and is probably the most popular model for soft biological
tissues to date [18].

Our network discovers interpretable parameter values that agree well with the values for skin.
Instead of following the usual paradigm to first select a constitutive model and then identify its mate-
rial parameters [29], our network discovers simultaneously both model and parameters. Notably, we
offer the network a wide variety of functional building blocks [33] from which a relevant subset of two
can be selected, i.e.

Pl 1) = 57t [explbrll —3) 1 + 2 2 [exp(ball ~ 1) 1] = p[] - 1],
1 4

while all other network parameters train to zero. Unlike in classical neural networks, for which the
weights have no physical interpretation [50,51], our non-zero weights wy = 1.5708, w14 = 0.8207,
wy4 = 0.8097MPa, w11, = 0.3921, wy 12 = 0.3388 MPa, naturally translate into a set of meaningful,
physically interpretable parameters: a collagen fiber angle of & = 90°, matrix and fiber stiffnesses of
a1 = 1.3291 MPa and a4 = 0.2656 MPa, and matrix and fiber coefficients of b; = 0.8207 and by = 0.3921,
that can teach us something about the underlying microstructure and physics of skin [30].
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A special application of our neural network is parameter identification. By constraining the ma-
jority of weights to zero and only training for a selective subset of weights [34], we can utilize our
neural network to identify the parameters of common constitutive models, including the Lanir [27],
Weiss [60], Groves [15], or Holzapfel [17] models. For example, by training specifically for the weights
w1,1, W21, W1,12, W12, We recover the classical Holzapfel parameters. For a simultaneous training with
all five load cases from Table 2, the network discovers weights of w;; = 0.3240, wy; = 0.3845MPa,
w12 = 10.7914, and w;12 = 0.0049 MPa that translate into a shear modulus of y = 0.2492MPa, a
Holzapfel stiffness-like parameter of a4 = 0.1054 MPa, and a coefficient of by = 10.7914.

pig skin - strip-x/strip-y pig skin - off-x pig skin - equi-biax pig skin - off-y
0.40 ) <0.33 ) ©0.36 ) .18 )
w R? =0.5927 o T R? =0.6654 o w _5( =0.6038 o __I R2 =0.5629
= °Z ° = JE ]
x o x o % g %
6 o 6 6 5° 6
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Figure 10: Pig skin biaxial extension data and neo-Hooke-Holzapfel model. True stresses o and oy, as functions of
the stretches A, and Ay, for the neo-Hooke-Holzapfel model, trained with all five dataset simultaneously. Dots illustrate the biaxial
extension data of pig skin [51] from Table 2; color-coded areas highlight the neo-Hookean and the Holzapfel contributions to
the stress function.

train strip-x train off-x train equi-biax train off-y train strip-y train all
1 MR, =05915 R?,,=0.6615 W R%,,=0.6574 M R%,,=0.6069 M R%,,=0.3679
1 MW R, =0.6262 RZ2,,=0.8063 M RZ,=0.9066 R2,=0.9641  HRZ =0.9683

mean(R2) =0.6505 mean(R?)= 0.5330 mean(R?)=0.5831 mean(R?)=0.5452 mean(R?)=0.6140 mean(R?) =0.6857
W x-strip offx M equi-biaxial M off-y M strip-y

Figure 11: Pig skin biaxial extension coefficients of correlation. Coefficients of determination R? for neo-Hooke-Holzapfel
model, with linear and quadratic exponential terms in the first and fourth invariants, [I; — 3] and exp([Iy — 1]?), trained with
strip-x, off-x, equibiaxial, off-y, strip-y, and all data of pig skin [51] from Table 2. Color-coded bars highlight each experiment.
In each column, one experiment is used as training data and the other four as test data. In the right column, all data are used
as training data.

Figures 10 and 11 summarize the training of our neural network when restricted to the classical
Holzapfel model, [17] and trained with the biaxial extension data from pig skin in Table 2. Consis-
tent with our intuition, the stress plots in Figure 10 confirm that the Holzapfel model performs well in
the y—direction parallel to the primary collagen fiber orientation, but does not capture strain stiffening
in the x-direction, perpendicular to the fibers. The coefficients of correlation in Figure 11 indicate an
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excellent fit for the off-y and strip-y data in the y-direction, but a moderate fit for all other data. Com-
pared to the popular and widely used Holzapfel model with linear and quadratic exponential terms in
Figures 10 and 11, our discovered model with two quadratic exponential terms in Figures 7 and 9 has
larger overall coefficients of correlation R? and provides a better fit of the data.

To address the shortcomings in the isotropic response of the classical Holzapfel model [17] in Figures 10
and 11, the new Holzapfel model [13] accounts for a fiber dispersion around the pronounced direction ng
with an additional dispersion parameter x. It includes both the first and fourth invariants I; and I in
the quadratic exponential while preserving the isotropic linear neo-Hookean term, i.e.

Y= %y[h —3] +%Z—4[exp(b4[1<11+ [1-3«],—1]*)—1].
4
While our current neural network architecture is not fully connected and-by design—contains ex-
plicit coupling between individual invariants, it discovers two exponential quadratic terms that are for-
mally similar to the exponential term in the new Holzapfel model. In contrast to the Holzapfel
model, the w11 and wy; weights of the isotropic linear neo-Hookean term, 3 u [ I; — 3], consistently
train to zero. This indicates that in our parameterization the isotropic linear term plays a negligi-
ble role and all isotropic contributions can be collectively represented by our exponential quadratic
term, %ul/ by [exp(b1[I; — 3]?) — 1], through non-zero w;4 and w,4 weights alone. Importantly,
for a dispersion parameter of x = %, the new Holzapfel model [13] exactly recovers our expo-
nential quadratic isotropic term, while for k = 0, it recovers our exponential quadratic anisotropic
term, 1a4/by[exp(bs[ls —1]?) — 1]. These direct comparisons with classical constitutive models
[13,15,17,27,60] suggests that our network not only discovers a physically reasonable model with
a small number of well-rationalized functional building blocks, but also helps rationalize the features

and shortcomings of existing models with regard to the development history of constitutive mod-
els [19,29,30].

Our neural network is polyconvex by design. From the general representation theorem [46] we
know that the free-energy function of an isotropic material can be expressed in its most generic form
as an infinite series of power products of its invariants, i.e. (I, L, I3) = Zﬁ,l:o Ciki [ — 3]/, —

3]¥[I3 — 1]}, where cjr are material constants. It is easy to see that the format of this function is more
general than our free-energy function (10): it contains mixed products of invariants, for which the free-
energy function is generally not convex. However, we can design the free-energy function as a sum of
convex functions of invariants such that the overall free-energy function remains polyconvex [16]. This
has motivated us to represent the free energy as the sum of four individual polyconvex subfunctions
1, P2, s, s [2,33], such that ¢(F) = ¢1(L1) + ¢2(I2) + Pa(Ls) + 5(I5), is polyconvex by design. For
our neural network, this implies that instead of using a fully connected network architecture, in which
coupling terms in the invariants Iy, I, I, Is emerge naturally, we propose a selectively connected network
architecture in which the four inputs I, I, Is, Is remain decoupled at all times, and combine only ad-
ditively to the final free-energy function, ¢ = 1 + o + P4 + 5, after the last hidden layer [21,51]. In
other words, if we want to include an explicit coupling of the invariants, e.g., through the dispersion
term [«I; + [1 — 3x ]Iy — 1] of the new Holzapfel model [13], we would have to extend our current
network by adding connections between the first and second layers, but then we might have to add
alternative strategies to ensure polyconvexity [12].

Our network autonomously discovers the best experiment with the largest correlation coeffi-
cient. For almost half a century, scientists have proposed different experiments to characterize flat
collagenous tissues, including uniaxial tension [41], biaxial extension [24,39], torsion [5], suction [58],
bulging [53], and indentation [19,59]. By far the simplest method is plain uniaxial tension. Intuitively
we would think that testing the sample parallel and perpendicular to the collagen fiber orientation, e.g.,
at angles of 0°,45%,90°, should provide the best insight into its overall response [41]. However, as we
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have seen in Figure 2, from single {Ay, Pxy} and {Ay, P, } stretch-stress pairs alone, it is difficult to in-
terpret the complex anisotropic behavior of skin. The first pioneering biaxial test system for skin was
proposed almost five decades ago [23], and has since then become the method of choice to characterize
flat composite materials with stiff fibers embedded in a soft matrix. Instead of data pairs, this system
provides data triplets, {Ax, 0xx, 0y, } and {Ay, 0y, 0y }, where the second stretch Ay or Ay is either held
constant or increased as a function of A, or A, [24,25,50,51]. From Figure 3 for rabbit skin and Figure 6
for pig skin, we conclude that this method provides rich enough data to discover both a unique model
and a parameter set, even from single experiments. Interestingly, analytical optimization of biaxial test
protocols reveals that two uniaxial stretch tests at mutually normal directions at 22.5%, 67.5° provide
richer information than tests performed at 00,459 90V [28]. This agrees well with our correlation coeffi-
cients in Figure 9, for which the off-x and off-y experiments at 22.5°, 67.5° are the best correlations across
all five experiments with mean(R?) values of 0.8423 and 0.8510. This suggests that our method is able
to autonomously discover the experiment that provides the best information to train itself.

Our Constitutive Artificial Neural Networks interpolate, extrapolate, and explain constitutive be-
havior. Unlike traditional neural networks, which do not require any prior physics knowledge to inter-
polate data within a well-defined window [1], Constitutive Artificial Neural Networks explicitly mod-
ify the network input, output, and architecture to incorporate physical constraints into the network
design [31]. This allows them to interpolate and extrapolate the stress-stretch response within and be-
yond a known stretch regime. Interestingly, the first neural network to approximates incremental prin-
cipal strains in concrete from given stress increments, stresses, and strains is more than three decades
old [14]. In the early days, neural networks served primarily as black box regression operators without
accounting for physical considerations or thermodynamic constraints. Now there is a strong push in
constitutive modeling to ensure that neural networks satisfy these constraints a priori [2,21,31,37,51].
The first family of Constitutive Artificial Neural Networks designed with these goals uses multiple
hidden layers to map the deformation gradient to a free-energy function, from which they derive the
stress [31]. Their layers are densely connected by conventional activation functions, typically of hy-
perbolic tangent or logistic type [33]. This introduces hundreds if not thousands of network weights
and biases, which the network has to learn from data. Of course, with so many degrees of freedom,
these early Constitutive Artificial Neural Networks have excellent interpolation properties: they can
fit any stress-stretch curve flawlessly, including potential measurement outliers [51]. However, with
more unknowns than data, they have a clear tendency of overfit [1]. Importantly, simply measuring
more points along the same stress-stretch curve or testing more samples with the same protocol does
not fix the overfitting problem. For successful training, the network does not simply need more data,
but rich data, ideally from multi-mode tests, not only individually in uniaxial tension, biaxial exten-
sion, and torsion, but also at different fiber angles [50], and combined with all modes [7,34]. Even with
the best of all training data, two essential limitations remain: the lack of extrapolation and the lack
of interpretability. Many popular conventional activation functions, such as the hyperbolic tangent or
logistic functions, tend to plateau beyond a certain range, and this plateau naturally translates into
the approximated stress function [33]. Furthermore, their weights are typically non-unique, lack clear
physical interpretation, and offer only limited insight into the underlying constitutive response. Our
new family of Constitutive Artificial Neural Networks addresses these limitations through a simple
design paradigm: it reverse-engineers its activation functions from functional building blocks of well-
accepted and widely used constitutive models, including the isotropic neo-Hookean [55], Blatz and
Ko [6], Mooney-Rivlin [40,45], and Demiray [11] models and their transversely isotropic counterparts,
the Lanir [27], Weiss [60], Grooves [15], and Holzapfel [17] models. By design, our neural networks
can interpolate, extrapolate, and explain the constitutive behavior just like these individual models, and
moreover as all these models combined.
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Limitations. Although we have successfully demonstrated the potential of our proposed approach,
we see three major limitations: First, and most obviously, the fit of the discovered model and param-
eters is not perfect and clearly not as good as a fit of first generation Constitutive Artificial Neural
Networks or Neural Ordinary Differential Equations. This perceived shortcoming of our method is a
result of a combination of two factors, its much lower number of degrees of freedom, and its inherent
objective of identifying models that are not just a combination of hyperbolic tangent functions, but
rather a generalization of existing computational models. We could address this limitation by adding
more terms that still satisfy the polyconvexity condition, for example, more polynomial terms of the
invariants or more polyconvex activation functions. However, the downside of this strategy is the loss
of a parsimonious representation with interpretable parameters. Second, and this is easily addressed,
our current network architecture is limited to discovering constitutive models in which the invariants
are fully decoupled. This implies that we cannot discover dispersion-type models in which the indi-
vidual invariants interact with one another. This limitation is intended to make it easier to account
for polyconvexity, but can be easily addressed by a fully connected network architecture in which
all nodes of the two hidden layers are interconnected. Third, and probably most difficult to handle,
our method remains slightly sensitive to its initial conditions, particularly to the initialization of the
network weights. Specifically, even when trained with all available data combined, it occasionally dis-
covers a quadratic term in the second invariant or a quadratic exponential term in the fifth invariant.
We tried to regularize the loss function, but neither L1 nor L2 regularization completely eliminates this
uniqueness problem. We conclude that this is not an artifact of our method, but rather an indication for
the existence of secondary models to explain the data. A crucial next step to gain quantitative insight
into all three limitations would be to embed our method into a Bayesian approach to identify the type
of outliers in terms of both models and model parameters.

7 Conclusion

Constitutive modeling and parameter identification are the cornerstones of continuum mechanics. For
decades, the usual standard in constitutive modeling was to first choose a model and then fit its pa-
rameters to data. However, this approach depends largely on user experience and personal preference.
Here we proposed a new method to simultaneously and fully autonomously discover the best model
and parameters to explain experimental data. As a by-product, the method also discovers the best set
of experiments to train itself. This is clearly a non-trivial task that, in mathematical terms, translates
into a complex non-convex optimization problem. Our solution strategy is to leverage the success, ro-
bustness, and stability of the powerful optimization schemes developed for classical neural networks.
We formulated the model finding problem as a Constitutive Artificial Neural Network with activation
functions representing traditional constitutive models and parameters that have a clear physical in-
terpretation. We have demonstrated the potential of our method for biaxial extension experiments on
skin, showing that the network autonomously discovers a small set of non-zero weights that define
the discovered model, while the majority of the weights are trained to zero. In contrast to classical
neural network modeling, our non-zero weights have a clear physical interpretation and can be trans-
lated into well-defined engineering parameters and microstructural features. Our findings suggest that
Constitutive Artificial Neural Networks have the potential to enable automated model, parameter, and
experiment discovery and could induce a paradigm shift in constitutive modeling, from user-defined
to automated model selection and parameterization.

Data availability

Our source code, data, and examples will be available at https://github.com/LivingMatter
Lab/CANNS.
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