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a b s t r a c t 

The brain is our softest and most vulnerable organ, and understanding its physics is a challenging but 

significant task. Throughout the past decade, numerous competing models have emerged to characterize 

its response to mechanical loading. However, selecting the best constitutive model remains a heuristic 

process that strongly depends on user experience and personal preference. Here we challenge the con- 

ventional wisdom to first select a constitutive model and then fit its parameters to data. Instead, we 

propose a new strategy that simultaneously discovers both model and parameters. We integrate more 

than a century of knowledge in thermodynamics and state-of-the-art machine learning to build a Con- 

stitutive Artificial Neural Network that enables automated model discovery. Our design paradigm is to 

reverse engineer the network from a set of functional building blocks that are, by design, a generaliza- 

tion of popular constitutive models, including the neo Hookean, Blatz Ko, Mooney Rivlin, Demiray, Gent, 

and Holzapfel models. By constraining input, output, activation functions, and architecture, our network 

a priori satisfies thermodynamic consistency, objectivity, symmetry, and polyconvexity. We demonstrate 

that–out of more than 40 0 0 models–our network autonomously discovers the model and parameters that 

best characterize the behavior of human gray and white matter under tension, compression, and shear. 

Importantly, our network weights translate naturally into physically meaningful parameters, such as shear 

moduli of 1.82kPa, 0.88kPa, 0.94kPa, and 0.54kPa for the cortex, basal ganglia, corona radiata, and corpus 

callosum. Our results suggest that Constitutive Artificial Neural Networks have the potential to induce a 

paradigm shift in soft tissue modeling, from user-defined model selection to automated model discovery. 

Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANN . 

Statement of significance 

Human brain is ultrasoft, difficult to test, and challenging to model. Numerous competing constitutive 

models exist, but selecting the best model remains a matter of personal preference. Here we automate 

the process of model selection. We formulate the problem of autonomous model discovery as a neural 

network and capitalize on the powerful optimizers in deep learning. However, rather than using a con- 

ventional neural network, we reverse engineer our own Constitutive Artificial Neural Network from a set 

of modular building blocks, which we rationalize from common constitutive models. When trained with 

tension, compression, and shear experiments of gray and white matter, our network simultaneously dis- 

covers both model and parameters that describes the data better than any existing invariant-based model. 

Our network could induce a paradigm shift from user-defined model selection to automated model dis- 

covery. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Motivation 

Traumatic brain injury is a major cause of death and disability 

orldwide [1] , with a global annual incidence of 69 million [2] . 

n the United States alone, 176 people die each day from trau- 

atic brain injury, and every nine seconds, someone sustains a 
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ew injury to the brain. Fortunately, not all concussions are life- 

hreatening; yet, more than 5 million Americans are living with 

rain-injury-related disabilities and need long-term assistance in 

heir everyday life [3] . Without a doubt, understanding the me- 

hanics of brain injury is a challenging but significant task [4] . 

hroughout the past decade, scientists across the world have made 

ignificant strides in testing, modeling, and simulating the hu- 

an brain [5–13] . However, because of its ultrasoft nature, the re- 

ults vary greatly, both qualitatively and quantitatively [14] . This 

as resulted in a wide selection of competing constitutive mod- 

ls for gray and white matter tissue, without any real guidance 

hich model to choose [7,15–17] . Throughout this manuscript, we 

sk how we can select the best constitutive model for the hu- 

an brain, whether the current existing models are really the best, 

nd if not, how we can systematically search and find a better 

odel. 

In machine learning, the process of finding relationships in 

omplex data is known as automated model discovery [18–21] . The 

reface automated implies that model discovery can be performed 

ntirely without human interaction [22,23] . Neural networks have 

merged as a powerful strategy to discover constitutive models 

rom large data, even in the complete absence of knowledge about 

he underlying physics [24] . However, classical neural networks ig- 

ore more than a century of research in constitutive modeling 

25] : They violate thermodynamic constraints [26] , neglect gener- 

lly accepted physical principles [27] , and fail to predict the behav- 

or outside the training regime [20,28] . In essence, neural networks 

erform excellently at fitting a complex function to big data, but 

hey are not interpretable; they teach us nothing about the under- 

ying physics [29] . So, really, what we are looking for is a strategy 

o autonomously discover a physically motivated model . 

Two successful but fundamentally different strategies have 

merged to integrate physics into neural network models: Physics- 

nformed Neural Networks that add physics-based equations as ad- 

itional terms to the loss function [30] and Constitutive Artificial 

eural Networks that explicitly modify the network input, output, 

nd architecture to hardwire physics-based constraints into the 

etwork design [31] . The first type of networks is more general and 

orks well for ordinary [32] or partial [29] differential equations, 

hereas the second type is specifically tailored towards constitu- 

ive equations [33] . Constitutive Artificial Neural Networks, with 

train invariants as input and free energy functions as output, were 

rst proposed for rubber-like materials almost two decades ago 

34] , and have recently regained attention in the constitutive mod- 

ling community [27,35–37] . They are now also increasingly recog- 

ized in the soft tissue biomechanics community with applications 

o skin [38] , blood clots [39] , arteries [33,40] , and myocardial tissue

39] . A common feature of all these neural networks is to use mul- 

iple hidden layers, generic activation functions, and several hun- 

reds, if not thousands of unknowns. To no surprise, they perform 

ell at interpolating non-linear stress-stretch relations from ten- 

ion, compression, or shear experiments. However, one critical lim- 

tation remains: the lack of an intuitive interpretation of the model 

nd its parameters [36] . 

Here, instead of using a generic neural network architecture, 

e reverse-engineer a new family of Constitutive Artificial Neural 

etworks from constitutive building blocks that are, by design, a 

eneralization of widely used and commonly accepted constitutive 

odels, including the neo Hookean [41] , Blatz Ko [42] , Mooney 

ivlin [43,44] , Demiray [45] , Gent [46] , and Holzapfel [47] mod- 

ls. As such, their network weights naturally translate into mate- 

ial parameters with standard physical units and a clear physical 

nterpretation [20] . We train our network with tension, compres- 

ion, and shear tests from the human cortex, basal ganglia, corona 

adiata, and corpus callosum [7,8,14] and demonstrate that it can 

imultaneously discover both model and parameters that best de- 
135 
cribe the data. Beyond automated model discovery, we show that 

e can also use our network for the parameter identification of ex- 

sting constitutive models. By systematically comparing the good- 

ess of fit of the different models, trained with the different ex- 

eriments, we not only discover the model that best describes the 

xperiments, but we also discover the experiment that best informs 

he models. Designing informative experiments is particularly sig- 

ificant for human brain tissue, for which fresh samples are rare, 

hallenging to preserve, and difficult to mount and test [14] . 

. Methods 

.1. Kinematics 

To characterize the deformation of the sample we want to test, 

e introduce the deformation map ϕ that maps material parti- 

les X from the undeformed configuration to particles, x = ϕ ( X ) , 

n the deformed configuration [48] . We describe relative deforma- 

ions within the sample using the deformation gradient F , the gra- 

ient of the deformation map ϕ with respect to the undeformed 

oordinates X , and its Jacobian J, 

 = ∇ X ϕ with J = det ( F ) > 0 . (1) 

ultiplying F with its transpose F t introduces the symmetric right 

auchy Green deformation tensor C , 

 = F t · F . (2) 

n the undeformed state, both tensors are identical to the unit 

ensor, F = I and C = I , and the Jacobian is one, J = 1 . A Jacobian

maller than one, 0 < J < 1 , denotes compression and a Jacobian

arger than one, 1 < J, denotes extension. 

sotropy. To characterize an isotropic material, we introduce the 

hree principal invariants I 1 , I 2 , I 3 and their derivatives ∂ F I 1 , ∂ F I 2 ,
 F I 3 , 

I 1 = F : F ∂ F I 1 = 2 F 

I 2 = 

1 

2 

[ I 2 1 − [ F t · F ] : [ F t · F ]] with ∂ F I 2 = 2 [ I 1 F − F · F t · F ] 

I 3 = det ( F t · F ) = J 2 ∂ F I 3 = 2 I 3 F 
−t 

. 

(3) 

n the undeformed state, F = I , the three invariants are equal to 

hree and one, I 1 = 3 , I 2 = 3 , and I 3 = 1 . 

erfect incompressibility. For isotropic, perfectly incompressible 

aterials, the third invariant always remains identical to one, I 3 = 

 

2 = 1 . This reduces the set of invariants to two, I 1 and I 2 . 

.2. Constitutive equations 

In solid mechanics, constitutive equations are tensor-valued 

ensor functions that define the relation between a stress measure, 

or example the Piola or nominal stress, P = lim d A → 0 ( d f / d A ) , the

orce d f per undeformed area d A , and a deformation measure, for 

xample the deformation gradient F [49,50] , 

 = P ( F ) . (4) 

t this point, we could use an arbitrary neural network to learn 

he functional relation between P and F and many neural networks 

n the literature do exactly that [26,51,52] . However, the functions 

 ( F ) that we learn through this approach generally violate widely- 

ccepted thermodynamical constraints and their parameters have 

o physical meaning [35] . For moderate amounts of data, standard 

eural networks are also associated with a high risk of overfit- 
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ing [36] . Our objective is therefore to build a Constitutive Arti- 

cial Neural Network that a priori satisfies thermodynamic con- 

traints and introduces parameters with a clear physical interpre- 

ation, while, at the same time, limiting the space of admissible 

unctions to prevent overfitting when available data are sparse. 

hermodynamic consistency. First, we ensure thermodynamic 

onsistency and guarantee that the Piola stress P inherently satis- 

es the second law of thermodynamics, the dissipation inequality 

53] , D = P : ˙ F − ˙ ψ ( F ) ≥ 0 , where D is the dissipation and ψ is the

elmholtz free energy with 

˙ ψ = ∂ ψ( F ) /∂ F : ˙ F . For hyperelastic or

reen-elastic materials with D 

. = 0 , the entropy inequality directly 

efines the Piola stress [65] , 

 = 

∂ψ( F ) 

∂ F 
. (5) 

his implies that, rather than approximating the nine stress com- 

onents P ( F ) as nine generic functions of the nine components of 

he deformation gradient F , the network can simply approximate 

he scalar-valued free energy function ψ( F ) from which we derive 

he stress P in a post-processing step. Satisfying thermodynamic 

onsistency according to Eq. (5) directly affects the output of the 

eural network. 

aterial objectivity and frame indifference. Second, we con- 

train the choice of the free energy function ψ to satisfy mate- 

ial objectivity or frame indifference and ensure that the constitu- 

ive laws do not depend on the external frame of reference [54] . 

o a priori satisfy this constraint, we require that the arguments of 

he free energy function are independent of rotations, and must be 

unctions of the right Cauchy Green deformation tensor C [50] , 

 = 

∂ψ( C ) 

∂ F 
= 

∂ψ( C ) 

∂ C 
: 

∂ C 

∂ F 
= 2 F · ∂ψ( C ) 

∂ C 
. (6) 

his implies that, rather than using the nine independent compo- 

ents of the deformation gradient F as input, we constrain the 

nput to the six independent components of the symmetric right 

auchy Green deformation tensor, C = F t · F . Satisfying material ob- 

ectivity according to Eq. (6) directly affects the input of the neural 

etwork. 

aterial symmetry and isotropy. Third, we can further constrain 

he choice of the free energy function ψ to include material sym- 

etry and assume that the material response remains unchanged 

nder transformations of the reference configuration. Here we con- 

ider the special case of isotropy , for which the free energy func- 

ion is a function of the strain invariants , ψ(I 1 , I 2 , I 3 ) , and the Piola

tress takes the following explicit representation, 

P = 

∂ψ(I 1 , I 2 , I 3 ) 

∂ F 
= 

∂ψ 

∂ I 1 

∂ I 1 
∂ F 

+ 

∂ψ 

∂ I 2 

∂ I 2 
∂ F 

+ 

∂ψ 

∂ I 3 

∂ I 3 
∂ F 

= 2 

[
∂ψ 

∂ I 1 
+ I 1 

∂ψ 

∂ I 2 

]
F − 2 

∂ψ 

∂ I 2 
F · F t · F + 2 I 3 

∂ψ 

∂ I 3 
F −t 

. 

(7) 

his implies that, rather than using the six independent compo- 

ents of the symmetric right Cauchy Green deformation tensor C 

s input, we constrain the input to our set of three invariants I 1 ,

 2 , I 3 . Considering materials with known symmetry classes accord- 

ng to Eqs. (7) directly affects, and ideally reduces, the input of the 

eural network. 

erfect incompressibility. Fourth, we can further constrain the 

hoice of the free energy function ψ for the special case of per- 

ect incompressibility for which the Jacobian remains constant and 

qual to one, I = J 2 = 1 . The condition of perfect incompressibil-
3 

136 
ty implies that Eq. (7) simplifies to an expression in terms of only 

he first two invariants I 1 and I 2 , corrected by the pressure term, 

p F −t , where p = − 1 
3 P : F is the hydrostatic pressure that we de- 

ermine from the boundary conditions, 

P = 

∂ψ(I 1 , I 2 , I 3 ) 

∂ F 
= 

∂ψ 

∂ I 1 

∂ I 1 
∂ F 

+ 

∂ψ 

∂ I 2 

∂ I 2 
∂ F 

− p F −t 

= 2 

[
∂ψ 

∂ I 1 
+ I 1 

∂ψ 

∂ I 2 

]
F − 2 

∂ψ 

∂ I 2 
F · F t · F − p F −t 

. 

(8) 

his implies that, rather than using the set of three invariants, I 1 , 

 2 , I 3 , as input, we reduce the input to a set of only two invariants,

 1 and I 2 . Considering materials with perfect incompressibility ac- 

ording to Eq. (8) reduces the input of the neural network. 

hysically reasonable constitutive restrictions. Fifth, we can 

urther constrain the functional form of the free energy ψ by in- 

luding additional constitutive restrictions that are both physically 

easonable and mathematically convenient [48] : (i) The free energy 

is non-negative for all deformation states F , 

( F ) ≥ 0 ∀ F . (9) 

ii) The free energy ψ and the stress P are zero in the reference 

onfiguration, F = I , 

( F ) 
. = 0 and P ( F ) 

. = 0 for F = I . (10) 

iii) The free energy ψ is infinite for infinite compression, J → 0 , 

nd infinite expansion, J → ∞ , 

( F ) → ∞ for J → 0 or J → ∞ . (11) 

o facilitate a stress-free reference configuration according to 

q. (10) , instead of using the invariants I 1 , I 2 , I 3 themselves as in-

ut, we use their deviation from the energy- and stress-free refer- 

nce state, [ I 1 − 3 ] , [ I 2 − 3 ] , [ I 3 − 1 ] , as input. In addition, from all

ossible activation functions, we select activation functions that a 

riori comply with conditions (i), (ii), and (iii). Satisfying physical 

onsiderations according to Eqs. (9) , (10) , and (11) directly affects 

he activation functions of the neural network. 

olyconvexity. Sixth, to guide the selection of the functional 

orms for the free energy function ψ , and ultimately the selec- 

ion of appropriate activation functions, we consider polyconvex- 

ty requirements [55] . From the general representation theorem we 

now that in its most generic form, the free energy of an isotropic 

aterial can be expressed as an infinite series of products of pow- 

rs of the invariants [56] , ψ(I 1 , I 2 , I 3 ) = 

∑ ∞ 

j,k,l=0 a jk [ I 1 − 3] j [ I 2 −
] k [ I 3 − 1] l , where a jkl are material constants. Importantly, mixed 

roducts of convex functions are generally not convex, and it is 

asier to show that the sum of specific convex subfunction usually 

s [57] . This motivates a special subclass of free energy functions 

n which the free energy is the sum of three individual polycon- 

ex subfunctions ψ 1 , ψ 2 , ψ 3 , such that ψ( F ) = ψ 1 (I 1 ) + ψ 2 (I 2 ) +
 3 (I 3 ) , is polyconvex by design and the stresses take the following 

orm, 

 = 

∂ψ(I 1 , I 2 , I 3 ) 

∂ F 
= 

∂ψ 1 

∂ I 1 

∂ I 1 
∂ F 

+ 

∂ψ 2 

∂ I 2 

∂ I 2 
∂ F 

+ 

∂ψ 3 

∂ I 3 

∂ I 3 
∂ F 

. (12) 

his implies that we can either select polyconvex activation func- 

ions from a set of algorithmically predefined activation func- 

ions [20] , or custom-design our own activations functions from 

nown polyconvex subfunctions ψ 1 , ψ 2 , ψ 3 [27] . Here we select 

rst and second powers of the invariants for the first hidden layer 

nd linear, exponential, and logarithmic functions of these powers 

or the second hidden layer, all with non-negative coefficients . In 
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Fig. 1. Constitutive Artificial Neural Network. Family of a feed forward Constitutive 

Artificial Neural Networks with two hidden layers to approximate the single scalar- 

valued free energy function ψ(I 1 , I 2 , I 3 ) as a function of the scalar-valued invariants 

I 1 , I 2 , I 3 of the deformation gradient F . The first layer generates powers (◦) , (◦) 2 , 
(◦) 3 of the network input and the second layer applies thermodynamically admis- 

sible activation functions f (◦) to these powers. Constitutive Artificial Neural Net- 

works are typically not fully connected by design to a priori satisfy the condition of 

polyconvexity. 
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Fig. 2. Activation functions for Constitutive Artificial Neural Networks. We use 

custom-design activation functions f (x ) along with their derivatives f ′ (x ) that in- 
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and linear and quadratic logarithmic functions, right, to reverse engineer a free en- 

ergy function that captures popular functional forms of constitutive terms. 
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ddition, we abandon the fully-connected network architecture, in 

hich mixed products of the invariants I 1 , I 2 , I 3 emerge naturally 

31] . Instead, we decouple the inputs I 1 , I 2 , I 3 and only combine

hem additively in the free energy function, ψ = ψ 1 + ψ 2 + ψ 3 

58,59] . Satisfying polyconvexity, for example according to Eq. (12) , 

an imply enforcing non-negative network weights [27,38] , and di- 

ectly affects the architecture of the neural network [36] . In practi- 

al applications, the constraints associated with polyconvexity may 

lso affect training cost and expressivity [60] . 

.3. Constitutive Artificial Neural Networks 

Motivated by these considerations, we build a family of Con- 

titutive Artificial Neural Networks that satisfy the conditions of 

hermodynamic consistency, material objectivity, material symme- 

ry, incompressibility, constitutive restrictions, and polyconvexity 

y design. This guides our selection of network input , output , ar- 

hitecture , and activation functions to a priori satisfy the funda- 

ental laws of physics. Special members of this family represent 

ell-known constitutive models, including the neo Hookean [41] , 

latz Ko [42] , Mooney Rivlin [43,44] , Demiray [45] , Gent [46] , and

olzapfel [47] models, for which the network weights gain a clear 

hysical interpretation. 

onstitutive Artificial Neural Network input and output. To en- 

ure thermodynamical consistency, rather than directly approxi- 

ating the stress P as a function of the deformation gradient F , 

he Constitutive Artificial Neural Network approximates the scalar- 

alued free energy function ψ as a function of the scalar-valued in- 

ariants I 1 , I 2 , I 3 . The Piola stress P then follows naturally from the

econd law of thermodynamics as the derivative of the free energy 

with respect to the deformation gradient F according to Eq. (7) . 

ig. 1 illustrates a Constitutive Artificial Neural Network with the 

nvariants I 1 , I 2 , I 3 as input and the the free energy ψ as output. 

onstitutive Artificial Neural Network architecture. To model 

 hyperelastic history-independent material, we select a feed for- 

ard architecture in which information only moves in one direc- 

ion, from the input nodes, without any cycles or loops, to the out- 

ut nodes. To ensure polyconvexity, we choose a selectively con- 

ected architecture according to Eq. (12) , such that the free energy 
137 
unction does not contain mixed terms in the invariants. Fig. 1 il- 

ustrates one possible network architecture that a priori decouples 

he individual invariants. Its free energy function, 

(I 1 , I 2 , I 3 ) = w 2 , 1 f 1 (w 1 , 1 [ I 1 − 3] 1 ) + w 2 , 2 f 2 (w 1 , 2 [ I 1 − 3] 1 ) 
+ w 2 , 3 f 3 (w 1 , 3 [ I 1 − 3] 1 ) + w 2 , 4 f 1 (w 1 , 4 [ I 1 − 3] 2 ) 
+ w 2 , 5 f 2 (w 1 , 5 [ I 1 − 3] 2 ) + w 2 , 6 f 3 (w 1 , 6 [ I 1 − 3] 2 ) 

. . . 

+ w 2 , 26 f 2 (w 1 , 26 [ I 3 − 1] 3 ) + w 2 , 27 f 3 (w 1 , 27 [ I 3 − 1] 3 ) , 

(13) 

ntroduces 3 × 3 × 3 + 3 × 3 × 3 = 54 weights. The first set of 27

eights, w 1 , 1 .. 27 , weighs the powers of the invariants and the sec- 

nd set of 27 weights, w 2 , 1 .. 27 , weighs the contributions of the 

unctions f 1 , f 2 , f 3 . 

ctivation functions. To ensure that our network satisfies basic 

hysically reasonable constitutive restrictions, rather than select- 

ng from a set of pre-defined activation functions such as the bi- 

ary step, soft step, hyperbolic tangent, inverse tangent, or soft 

lus functions, we custom-design our own activation functions to 

everse-engineer a free energy function that captures popular forms 

f constitutive terms. Specifically, we select linear and quadratic 

owers of the first and second invariants for the first layer of the 

etwork, and linear, exponential, or logarithmic functions for the 

econd layer. 

Fig. 2 illustrates the six activation functions f (x ) along with 

heir derivatives f ′ (x ) that we use throughout the remainder of 

his work. Notably, in contrast to the activation functions for 

lassical neural networks, all six functions are not only mono- 

onic , f (x + ε) ≥ f (x ) for ε ≥ 0 , such that increasing deformations

esult in increasing stresses, but also continuous at the origin, 

f (−0) = f (+0) , continuously differentiable and smooth at the ori- 

in, f ′ (−0) = f ′ (+0) , and zero at the origin, f (0) = 0 , to ensure

n energy- and stress-free reference configuration according to 

q. (10) , and unbounded , f (−∞ ) → ∞ and f (+ ∞ ) → ∞ , to ensure

n infinite energy and stress for extreme deformations according 

o Eq. (11) . 

Fig. 3 illustrates our isotropic, perfectly incompressible Consti- 

utive Artificial Neural Network with two hidden layers and four 

nd twelve nodes. The first layer generates powers (◦) 1 and (◦) 2 
f the network inputs, [ I 1 − 3] and [ I 2 − 3] , and the second layer

pplies the identity, (◦) , the exponential function, ( exp ((◦)) − 1) , 

nd the natural logarithm, (−ln (1 − (◦))) , to these powers. The set 
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Fig. 3. Constitutive Artificial Neural Network. Isotropic, perfectly incompressible 

Constitutive Artificial Neural Network with with two hidden layers to approximate 

the single scalar-valued free energy function ψ(I 1 , I 2 ) as a function of the first and 

second invariants of the deformation gradient F using twelve terms. The first layer 

generates powers (◦) 1 and (◦) 2 of the network inputs, [ I 1 − 3] and [ I 2 − 3] and the 

second layer applies the identity (◦) , the exponential function, ( exp ((◦)) − 1) , and 

the natural logarithm, (−ln (1 − (◦))) , to these powers. The networks is selectively 

connected by design to a priori satisfy the condition of polyconvexity. 

o

F

r

w  

w

w  

l

f  

i

P

c

s

m

m

p

S

f

s

t

c

T  

e

a

ψ

T

o  

b  

f

f

ψ

T

(  

[  

a

ψ

T

t  

a

ψ

T

[

ψ

T

t

a

ψ

T

c

d

L

N

w

t

c

s

a

L

T

o

L

b  ∑
 ∑

t

l

m

o

n

f equations for this networks takes the following explicit form, 

ψ(I 1 , I 2 ) = w 2 , 1 w 1 , 1 [ I 1 − 3] + w 2 , 2 [ exp ( w 1 , 2 [ I 1 − 3] )− 1] 
− w 2 , 3 ln (1 − w 1 , 3 [ I 1 − 3] ) 

+ w 2 , 4 w 1 , 4 [ I 1 − 3] 2 + w 2 , 5 [ exp ( w 1 , 5 [ I 1 − 3] 2 )− 1] 

− w 2 , 6 ln (1 − w 1 , 6 [ I 1 − 3] 2 ) 
+ w 2 , 7 w 1 , 7 [ I 2 − 3] + w 2 , 8 [ exp ( w 1 , 8 [ I 2 − 3] )− 1] 

− w 2 , 9 ln (1 − w 1 , 9 [ I 2 − 3] ) 
+ w 2 , 10 w 1 , 10 [ I 2 − 3] 2 + w 2 , 11 [ exp ( w 1 , 11 [ I 2 − 3] 2 )− 1] 

− w 2 , 12 ln (1 − w 1 , 12 [ I 2 − 3] 2 ) . 

(14) 

or this particular format, one of the first two weights of each 

ow becomes redundant, and we can reduce the set of net- 

ork parameters from 24 to 20, w = [ (w 1 , 1 w 2 , 1 ) , w 1 , 2 , w 2 , 2 ,

 1 , 3 , w 2 , 3 , (w 1 , 4 w 2 , 4 ) , w 1 , 5 , w 2 , 5 , w 1 , 6 , w 2 , 6 , (w 1 , 7 w 2 , 7 ) , w 1 , 8 , w 2 , 8 , 

 1 , 9 , w 2 , 9 , (w 1 , 10 w 2 , 10 ) , w 1 , 11 , w 2 , 11 , w 1 , 12 , w 2 , 12 ] . Using the second

aw of thermodynamics, we can derive an explicit expression 

or the Piola stress from Eq. (5) , P = ∂ψ / ∂ F , or, more specif-

cally, for the case of perfect incompressibility from Eq. (8) , 

 = ∂ψ / ∂ I 1 · ∂ I 1 / ∂ F + ∂ψ / ∂ I 2 · ∂ I 2 / ∂ F − p F −t , 

P = ∂ I 1 /∂ F [ w 2 , 1 w 1 , 1 + w 2 , 2 w 1 , 2 exp ( w 1 , 2 [ I 1 − 3 ] ) 
+ w 2 , 3 w 1 , 3 / [ 1 − w 1 , 3 [ I 1 − 3 ] ] 

+ 2 [ I 1 − 3 ] [ w 2 , 4 w 1 , 4 + w 2 , 5 w 1 , 5 exp ( w 1 , 5 [ I 1 − 3 ] 2 )] 

+ w 2 , 6 w 1 , 6 / [ 1 − w 1 , 6 [ I 1 − 3 ] 2 ]] 
+ ∂ I 2 /∂ F [ w 2 , 7 w 1 , 7 + w 2 , 8 w 1 , 8 exp ( w 1 , 8 [ I 2 − 3 ] ) 

+ w 2 , 9 w 1 , 9 / [ 1 − w 1 , 9 [ I 2 − 3 ] ] 

+ 2 [ I 2 − 3 ] [ w 2 , 10 w 1 , 10 + w 2 , 11 w 1 , 11 exp ( w 1 , 11 [ I 2 − 3 ] 2 )] 

+ w 2 , 12 w 1 , 12 / [ 1 − w 1 , 12 [ I 2 − 3 ] 2 ]] , 

(15) 

orrected by the pressure term, −p F −t , with p = − 1 
3 P : F . The 

tress definition (15) suggests that our model is a generalization of 

any popular constitutive models for incompressible hyperelastic 

aterials. It seems natural to ask whether and how its network 

arameters w 1 .. 2 , 1 .. 12 relate to the parameters of these models. 

pecial types of constitutive equations. To demonstrate that the 

amily of Constitutive Artificial Neural Networks in Fig. 1 and its 

pecific example in Fig. 3 are generalizations of popular constitu- 

ive models, we consider six widely used models and systemati- 

ally compare their material parameters to our network weights. 

he neo Hookean model [41] , the simplest of all models, has a free

nergy function that is a constant function of only the first invari- 
138 
nt, [ I 1 − 3 ] , scaled by the shear modulus μ, 

 = 

1 
2 
μ [ I 1 − 3 ] where μ = 2 w 1 , 1 w 2 , 1 . (16) 

he Blatz Ko model [42] , has a free energy function that depends 

nly the second and third invariants, [ I 2 − 3 ] and [ I 3 − 1 ] , scaled

y the shear modulus μ as ψ = 

1 
2 μ [ I 2 /I 3 + 2 

√ 

I 3 − 5 ] . For per-

ectly incompressible materials, I 3 = 1 , it simplifies to the following 

orm, 

 = 

1 
2 
μ [ I 2 − 3 ] where μ = 2 w 1 , 7 w 2 , 7 . (17) 

he Mooney Rivlin model [43,44] is a combination of both (16) and 

17) and accounts for the first and second invariants, [ I 1 − 3 ] and

 I 2 − 3 ] , scaled by the moduli μ1 and μ2 that sum up to the over-

ll shear modulus, μ = μ1 + μ2 , 

 = 

1 

2 

μ1 [ I 1 − 3 ] + 

1 
2 
μ2 [ I 2 − 3 ] where 

μ1 = 2 w 1 , 1 w 2 , 1 

μ2 = 2 w 1 , 7 w 2 , 7 . 

(18) 

he Demiray model [45] or Delfino model [61] uses linear exponen- 

ials of the first invariant, [ I 1 − 3] , in terms of two parameters a

nd b, 

 = 

1 

2 

a 

b 
[ exp ( b [ I 1 − 3 ] ) − 1 ] where 

a = 2 w 1 , 2 w 2 , 2 

b = w 1 , 2 . 
(19) 

he Gent model [46] uses linear logarithms of the first invariant, 

 I 1 − 3] , in terms of two parameters α and β , 

 = −1 

2 

α

β
ln ( 1 − ( β [ I 1 − 3 ] ) where 

α = 2 w 1 , 3 w 2 , 3 

β = w 1 , 3 . 

(20) 

he Holzapfel model [47] uses quadratic exponentials, typically of 

he fourth invariant, which we adapt here for the the first invari- 

nt, [ I 1 − 3 ] , in terms of two parameters a and b, 

 = 

1 

2 

a 

b 
[ exp ( b[ I 1 − 3 ] 2 ) − 1 ] where 

a = 2 w 1 , 5 w 2 , 5 

b = w 1 , 5 . 
(21) 

hese simple examples demonstrate that we can recover popular 

onstitutive functions for which the network weights gain a well- 

efined physical meaning. 

oss function. The objective of our Constitutive Artificial Neural 

etwork is to learn the network parameters θ = { w i j } , the network 

eights of the first and second layers, by minimizing a loss func- 

ion L that penalizes the error between model and data. Similar to 

lassical neural networks, we characterize this error as the mean 

quared error, the L 2 -norm of the difference between model P ( F i ) 

nd data ˆ P i , divided by the number of training points n trn , 

 ( θ; F ) = 

1 

n trn 

n trn ∑ 

i =1 

|| P ( F i ) − ˆ P i || 2 → min . (22) 

o reduce potential overfitting, we also study the effects of Lasso 

r L1 regularization and L2 regularization, 

 ( θ; F ) = 

1 

n trn 

n trn ∑ 

i =1 

|| P ( F i ) − ˆ P i || 2 + α1 || W || 1 + 

1 

2 
α2 || W || 2 2 → min , 

(23) 

y enhancing the loss function by the weighted L1 norm, || W || 1 =
 

i 

∑ 

j | w i j | , or the weighted Euclidian or L2 norm, || W || 2 
2 

=
 

i 

∑ 

j w 

2 
i j 

, where α1 and α2 are the weighting coefficients. We 

rain the network by minimizing the loss function (22) or (23) and 

earn the network parameters θ = { w i j } using the ADAM opti- 

izer, a robust adaptive algorithm for gradient-based first-order 

ptimization, and constrain the weights to always remain non- 

egative, w i j ≥ 0 . 
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.4. Data 

To demonstrate automated model discovery with our Constitu- 

ive Artificial Neural Network, we perform a systematic study us- 

ng widely-used benchmark data for human brain tissue [7,8,14] . 

pecifically, we train our two-layer Constitutive Artificial Neu- 

al Network for isotropic, perfectly incompressible materials from 

ig. 3 , discover a material model and its parameters, and compare 

he model and parameters against six traditional constitutive mod- 

ls for soft biological tissues [41–47] . We consider two training 

cenarios, single-mode training and multi-mode training , for the ho- 

ogeneous deformation modes of uniaxial tension, uniaxial com- 

ression, and simple shear. 

ension and compression. For the case of uniaxial tension and 

ompression, we stretch the specimen in one direction, F 11 = 

1 = λ. For an isotropic , perfectly incompressible material with I 3 = 

2 
1 λ

2 
2 λ

2 
3 = 1 , the stretches orthogonal to the loading direction are 

dentical and equal to the square root of the stretch, F 22 = λ2 = 

−1 / 2 and F 33 = λ3 = λ−1 / 2 . From the resulting deformation gradi- 

nt, F = diag { λ, λ−1 / 2 , λ−1 / 2 } , we calculate the first and second 

nvariants and their derivatives, 

I 1 = λ2 + 2 /λ
I 2 = 2 λ + 1 / λ2 with 

∂ λI 1 = 2 λ − 2 /λ2 

∂ λI 2 = 2 − 2 / λ3 , 
(24) 

o evaluate the nominal uniaxial stress P 11 using the general 

tress-stretch relationship for perfectly incompressible materi- 

ls, P ii = [ ∂ψ / ∂ I 1 ] [ ∂ I 1 / ∂λi ] + [ ∂ψ / ∂ I 2 ] [ ∂ I 2 / ∂λi ] − [1 / λi ] p, for i =
 , 2 , 3 . Here, p denotes the hydrostatic pressure that we determine

rom the zero stress condition in the transverse directions, P 22 = 0 

nd P 33 = 0 , as p = [2 /λ] ∂ψ / ∂ I 1 + [2 λ + 2 / λ2 ] ∂ψ / ∂ I 2 . This results

n the following explicit uniaxial stress-stretch relation for perfectly 

ncompressible, isotropic materials, 

 11 = 2 

[
∂ψ 

∂ I 1 
+ 

1 

λ

∂ψ 

∂ I 2 

][ 
λ − 1 

λ2 

] 
. (25) 

hear. For the case of simple shear, we shear the specimen in one 

irection, F 12 = γ . For an isotropic , perfectly incompressible material 

ith F 11 = F 22 = F 33 = 1 , we calculate the first and second invari-

nts and their derivatives, 

I 1 = 3 + γ 2 

I 2 = 3 + γ 2 with 

∂ λI 1 = 2 γ
∂ λI 2 = 2 γ , 

(26) 

o evalute the nominal shear stress P 12 using the general stress- 

tretch relationship for perfectly incompressible materials. This re- 
ig. 4. Model and parameter discovery for gray matter. Loss over epochs, top, and nomina

ncompressible Constitutive Artificial Neural Network with two hidden layers and twelve 

or multi-mode training with all three data sets combined. Dots illustrate the tension, com

ighlight the twelve contributions to the discovered stress function according to Fig. 3 fro

139 
ults in the following explicit shear stress-strain relation for perfectly 

ncompressible, isotropic materials, 

 12 = 2 

[
∂ψ 

∂ I 1 
+ 

∂ψ 

∂ I 2 

]
γ . (27) 

esting and training data. Tables 1 and 2 summarize our bench- 

ark data of human gray matter tissue from the cortex and basal 

anglia and white matter tissue from the corona radiata and cor- 

us callosum tested in tension, compression, and shear [7,8,14] . 

ll tests were performed on cubic 5 × 5 × 5 mm 

3 samples, har- 

ested from ten human brains, six male and four female, ages 

4 to 81 years, tested within 60 hours post mortem [7] . Since 

rain tissue is most vulnerable to tensile loading, each sample was 

rst tested in shear, then in compression, and then in tension, 

t maximum shear strains and stretches well within the elastic 

egime. We report each data set as 17 pairs of stretches and nom- 

nal uniaxial stresses, { λ, P 11 } , or shear strains and nominal shear

tresses, { γ , P 12 } , where the stretches and shear strains range from 

 . 9 ≤ λ ≤ 1 . 1 and 0 . 0 ≤ γ ≤ 0 . 2 , and the stresses are the means of

he loading and unloading curves of n samples. We first conduct 

 general performance study, illustrate the convergence of the loss 

unction, and split each data set into 75% training data and 25% 

est data to demonstrate that our model generally performs well 

t both interpolation and extrapolation. Throughout the remainder 

f this study, we then perform single-mode training with one mode 

sed as training data and the remaining two modes as test data, 

nd multi-mode training with all three modes used as training data. 

or convenience, all data sets from Tables 1 and 2 are available at 

ttps://github.com/LivingMatterLab/CANN . 

. Results 

Fig. 4 illustrates the performance of our Constitutive Artifi- 

ial Neural Network with two hidden layers and twelve nodes 

or single-mode training with the tension, compression, and shear 

ata, and for multi-mode training with all three data sets com- 

ined. The top row documents the loss function from Eq. (22) plot- 

ed over the training epochs, and the bottom row shows the re- 

ulting nominal stress P from Eq. (15) as a function of the stretch 

and shear strain γ . The dots summarize the experimental data 

rom the human cortex under tension, compression, and shear 

7] from Table 1 , and the color-coded areas highlight the twelve 

ontributions to the discovered stress function (22) according to 

ig. 3 with the discovered weights from Table 3 . In each plot, we 
l stress as a function of stretch and shear strain, bottom, for the isotropic, perfectly 

nodes, for single-mode training with the tension, compression, and shear data, and 

pression, and shear data of the human cortex [7] from Table 1 ; color-coded areas 

m Table 3 . 

https://github.com/LivingMatterLab/CANN
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Table 1 

Gray matter data. Cortex and basal ganglia tested in tension, compression, and shear; stresses are reported as means from the loading and unloading curves of n 

samples [7] . 

cortex 

tension 

cortex 

compression 

cortex 

shear 

basal ganglia 

tension 

basal ganglia 

compression 

basal ganglia 

shear 

n = 15 n = 17 n = 35 n = 15 n = 15 n = 29 

λ P 11 λ P 11 γ P 12 λ P 11 λ P 11 γ P 12 

[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

1.0063 0.0251 0.9938 -0.0308 0.0125 0.0147 1.0063 0.0149 0.9938 -0.0174 0.0125 0.0070 

1.0125 0.0462 0.9875 -0.0659 0.0250 0.0294 1.0125 0.0251 0.9875 -0.0358 0.0250 0.0140 

1.0188 0.0666 0.9812 -0.1040 0.0375 0.0486 1.0188 0.0345 0.9812 -0.0534 0.0375 0.0210 

1.0250 0.0838 0.9750 -0.1479 0.0500 0.0633 1.0250 0.0446 0.9750 -0.0778 0.0500 0.0305 

1.0312 0.1010 0.9688 -0.1908 0.0625 0.0814 1.0312 0.0540 0.9688 -0.1021 0.0625 0.0397 

1.0375 0.1175 0.9625 -0.2375 0.0750 0.0983 1.0375 0.0619 0.9625 -0.1265 0.0750 0.0488 

1.0437 0.1324 0.9563 -0.2920 0.0875 0.1186 1.0437 0.0705 0.9563 -0.1479 0.0875 0.0579 

1.0500 0.1488 0.9500 -0.3504 0.1000 0.1412 1.0500 0.0791 0.9500 -0.1752 0.1000 0.0703 

1.0562 0.1661 0.9437 -0.4127 0.1125 0.1649 1.0562 0.0862 0.9437 -0.2102 0.1125 0.0805 

1.0625 0.1856 0.9375 -0.4866 0.1250 0.1942 1.0625 0.0963 0.9375 -0.2414 0.1250 0.0930 

1.0688 0.2091 0.9313 -0.5684 0.1375 0.2292 1.0688 0.1050 0.9313 -0.2842 0.1375 0.1088 

1.0750 0.2366 0.9250 -0.6579 0.1500 0.2698 1.0750 0.1151 0.9250 -0.3270 0.1500 0.1257 

1.0813 0.2710 0.9187 -0.7630 0.1625 0.3227 1.0813 0.1277 0.9187 -0.3776 0.1625 0.1449 

1.0875 0.3125 0.9125 -0.8837 0.1750 0.3791 1.0875 0.1426 0.9125 -0.4321 0.1750 0.1686 

1.0938 0.3650 0.9062 -1.0005 0.1875 0.4557 1.0938 0.1582 0.9062 -0.4905 0.1875 0.1969 

1.1000 0.4151 0.9000 -1.1484 0.2000 0.5435 1.1000 0.1778 0.9000 -0.5528 0.2000 0.2262 

Table 2 

White matter data. Corona radiata and corpus callosum tested in tension, compression, and shear; stresses are reported as means from the loading and unloading 

curves of n samples [7] . 

corona radiata corona radiata corona radiata corpus callosum corpus callosum corpus callosum 

tension compression shear tension compression shear 

n = 18 n = 18 n = 36 n = 19 n = 20 n = 39 

λ P 11 λ P 11 γ P 12 λ P 11 λ P 11 γ P 12 

[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

1.0063 0.0157 0.9938 -0.0193 0.0125 0.0079 1.0063 0.0078 0.9938 -0.0096 0.0125 0.0036 

1.0125 0.0235 0.9875 -0.0387 0.0250 0.0159 1.0125 0.0149 0.9875 -0.0164 0.0250 0.0072 

1.0188 0.0345 0.9812 -0.0543 0.0375 0.0238 1.0188 0.0196 0.9812 -0.0300 0.0375 0.0109 

1.0250 0.0423 0.9750 -0.0800 0.0500 0.0318 1.0250 0.0251 0.9750 -0.0427 0.0500 0.0170 

1.0312 0.0509 0.9688 -0.1040 0.0625 0.0409 1.0312 0.0298 0.9688 -0.0564 0.0625 0.0217 

1.0375 0.0572 0.9625 -0.1305 0.0750 0.0488 1.0375 0.0337 0.9625 -0.0730 0.0750 0.0319 

1.0437 0.0642 0.9563 -0.1674 0.0875 0.0601 1.0437 0.0376 0.9563 -0.0895 0.0875 0.0342 

1.0500 0.0721 0.9500 -0.2024 0.1000 0.0681 1.0500 0.0415 0.9500 -0.1051 0.1000 0.0422 

1.0562 0.0791 0.9437 -0.2453 0.1125 0.0817 1.0562 0.0454 0.9437 -0.1363 0.1125 0.0468 

1.0625 0.0869 0.9375 -0.2959 0.1250 0.0964 1.0625 0.0486 0.9375 -0.1596 0.1250 0.0558 

1.0688 0.0940 0.9313 -0.3543 0.1375 0.1133 1.0688 0.0533 0.9313 -0.1946 0.1375 0.0627 

1.0750 0.1050 0.9250 -0.4127 0.1500 0.1347 1.0750 0.0580 0.9250 -0.2297 0.1500 0.0751 

1.0813 0.1151 0.9187 -0.4827 0.1625 0.1596 1.0813 0.0634 0.9187 -0.2764 0.1625 0.0853 

1.0875 0.1292 0.9125 -0.5723 0.1750 0.1878 1.0875 0.0697 0.9125 -0.3270 0.1750 0.1011 

1.0938 0.1418 0.9062 -0.6657 0.1875 0.2227 1.0938 0.0775 0.9062 -0.3854 0.1875 0.1192 

1.1000 0.1582 0.9000 -0.7591 0.2000 0.2611 1.1000 0.0862 0.9000 -0.4555 0.2000 0.1429 

Fig. 5. Predictive potential of classical neural network vs. Constitutive Artificial Neural Network. Nominal stress as a function of stretch for a classical neural network with 

one hidden layer, twelve nodes, and 37 unknowns, top, and for the isotropic, perfectly incompressible Constitutive Artificial Neural Network with two hidden layers, twelve 

nodes, and 20 unknowns. Dots illustrate the compression data of the human cortex, basal ganglia, corona radiata, and corpus callosum [7] from Table 1 , of which we used 

the left 75% for training and the right 25% for testing; color-coded areas highlight the twelve contributions to the discovered stress function of hyperbolic tangent type, top, 

and according to Fig. 3 , bottom. 

140 
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Table 3 

Gray matter model. Cortex parameters learned for tension, compression, and shear data from 

Table 1 using the isotropic, perfectly incompressible Constitutive Artificial Neural Network with 

two hidden layers, and twelve nodes from Fig. 3 . Summary of the 24 weights w 1:2 , 1:12 and the 

coefficient of determination R 2 for training with the three individual tests and for all three tests 

combined. 

cortex cortex cortex cortex 

tension compression shear ten+com+shr 

n = 15 n = 17 n = 35 n = 15 , 17 , 35 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 1 0.3135 0.3456 0.4027 0.1979 0.6628 0.1796 0.0000 0.0000 

w •, 2 0.1576 0.1094 0.0628 0.7898 0.2422 0.2599 0.0000 0.0000 

w •, 3 0.0000 0.0000 0.0000 0.0000 0.7662 0.1840 0.0000 0.0000 

w •, 4 1.1303 0.6813 2.3725 1.1085 1.4402 1.4200 0.0000 0.0000 

w •, 5 1.4721 1.5618 1.1856 2.1032 1.3360 1.7106 0.0000 0.0000 

w •, 6 0.5017 0.4345 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

w •, 7 0.9522 0.1690 1.8534 0.2897 0.3725 0.1899 0.0000 0.0000 

w •, 8 0.2275 0.2072 0.0587 0.0585 0.2607 0.3574 0.0000 0.0000 

w •, 9 0.6824 0.1727 1.9469 0.1144 0.0000 0.0000 0.9875 0.6339 

w •, 10 2.2641 0.8482 2.2740 1.1302 0.8798 1.9874 2.7738 1.3702 

w •, 11 0.0382 0.3571 1.2234 2.0668 1.7350 1.5506 1.6495 1.8880 

w •, 12 0.9325 0.4734 0.0000 0.0000 0.8817 1.4250 1.4026 1.6663 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.9875 0.9282 0.0000 0.8176 0.6209 0.9985 0.3560 0.9852 

0.4366 0.7829 0.9999 0.8602 0.7297 0.8785 0.8972 0.9306 

Fig. 6. Gray matter data vs. model. Nominal stress as a function of stretch and shear strain for the isotropic, perfectly incompressible Constitutive Artificial Neural Network 

with two hidden layers, and twelve nodes from Fig. 3 . Dots illustrate the tension, compression, and shear data of the human cortex [7] from Table 1 ; color-coded areas 

highlight the twelve contributions to the discovered stress function according to Fig. 3 from Table 3 . 

r

n

l

t

o

w

t

c

d

o

r

t

l

k

λ
A

a

h

[

w  

t

t

i

c

eport the coefficients of determination R 2 to quantify the good- 

ess of fit between model and data. First, the rapidly dropping 

oss in all four graphs of the top row confirms that our network 

rains robustly and converges within less than 5,0 0 0 epochs. Sec- 

nd, the R 2 values of 0.99, 1.00, 1.00, 0.99 confirm that our net- 

ork trains well for both single- and multi-mode training. Third, 

raining our network is relatively inexpensive , with computational 

osts per training run varying between 2-3 minutes on a stan- 

ard desktop computer. Fig. 5 compares the predictive potential 

f a classical neural network and our Constitutive Artificial Neu- 

al Network. The top row shows the nominal stress P as a func- 
ion of stretch λ for a classical neural network with one hidden 

141 
ayer, twelve nodes, 24 weights, 13 biases, and a total of 37 un- 

nowns. The bottom row shows the same stress P versus stretch 

response for our isotropic, perfectly incompressible Constitutive 

rtificial Neural Network with two hidden layers, twelve nodes, 

nd 20 unknowns. The dots illustrate the compression data of the 

uman cortex, basal ganglia, corona radiata, and corpus callosum 

7] from Table 1 . To assess the predictive potential of both net- 

orks, we used 75% of the data to the left of the dashed line for

raining and the remaining 25% to the right of the dashed line for 

esting. First, both networks train well and succeed in interpolat- 

ng or fitting the dots to the left of the dashed line. Second, the 

lassical neural network in the top row fails to extrapolate or pre- 
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Table 4 

White matter model. Corona radiata parameters learned for tension, compression, and shear 

data from Table 2 using the isotropic, perfectly incompressible Constitutive Artificial Neural 

Network with two hidden layers, and twelve nodes from Fig. 3 . Summary of the 24 weights 

w 1:2 , 1:12 and the coefficient of determination R 2 for training with the three individual tests and 

with all three tests combined. 

corona radiata corona radiata corona radiata corona radiata 

tension compression shear ten+com+shr 

n = 18 n = 18 n = 33 n = 18 , 18 , 33 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 1 0.0000 0.0000 1.7357 0.2807 0.3643 0.2492 0.0000 0.0000 

w •, 2 0.0000 0.0000 0.0000 0.0000 0.1032 0.2404 0.0000 0.0000 

w •, 3 0.0000 0.0000 0.0000 0.0000 0.0369 0.3070 0.0000 0.0000 

w •, 4 0.8932 0.1474 1.5473 1.0767 1.3942 0.6520 0.0000 0.0000 

w •, 5 0.3760 0.2325 1.1415 1.2150 1.3600 1.1027 0.0000 0.0000 

w •, 6 1.3081 0.4295 1.2115 1.1480 0.4401 0.8310 0.0000 0.0000 

w •, 7 1.0042 0.0717 0.0000 0.0000 0.0349 0.2945 1.3862 0.1598 

w •, 8 0.0867 0.0717 0.0029 0.0295 0.0550 0.3905 0.2398 0.4900 

w •, 9 0.8403 0.2065 0.0000 0.0000 0.7680 0.1179 0.0000 0.0000 

w •, 10 0.0000 0.0000 1.0083 1.4130 1.0552 0.8552 0.0000 0.0000 

w •, 11 0.0000 0.0000 1.2191 1.1331 0.9990 1.0740 1.8893 1.6859 

w •, 12 1.1048 0.0030 2.6478 0.8233 0.0000 0.0000 1.1789 1.9113 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.9875 0.8250 0.0000 0.0620 0.0000 0.9989 0.0000 0.9349 

0.0460 0.5471 0.9998 0.6251 0.4837 0.7271 0.7898 0.8361 

Fig. 7. White matter data vs. model. Nominal stress as a function of stretch and shear strain for the isotropic, perfectly incompressible Constitutive Artificial Neural Network 

with two hidden layers, and twelve nodes from Fig. 3 . Dots illustrate the tension, compression, and shear data of the human corona radiata [7] from Table 1 ; color-coded 

areas highlight the twelve contributions to the discovered stress function according to Fig. 3 from Table 4 . 
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ict the behaviorbeyond the training regime and the model devi- 

tes progressively from the data, as confirmed by the coefficients 

f determination R 2 of 0.85, 0.89, 0.79, 0.72. Third, our Constitu- 

ive Artificial Neural Network in the bottom row performs well at 

xtrapolating or predicting the test data to the right of the dashed 

ine, with coefficients of determination R 2 of 1.00, 1.00, 1.00, 1.00 

cross all four brain regions. 

Table 3 and Fig. 6 summarize and illustrate the discovered mod- 

ls for the human cortex for the tension, compression, and shear 

ata from Table 1 using our isotropic, perfectly incompressible 

onstitutive Artificial Neural Network from Fig. 3 . Table 3 summa- 

izes the 24 weights w 1:2 , 1:12 and the coefficient of determination 

 

2 for single-mode training with the three individual modes and 
142 
or multi-mode training with all three modes combined. Fig. 6 di- 

ectly compares the data and model in terms of the nominal stress 

s a function of the stretch and shear strain, where the dots indi- 

ate the measured data and the color-coded regions highlight the 

ndividual contributions of the twelve network nodes to the discov- 

red free energy function ψ . First, for single-mode training with 

he individual modes, we note that the Constitutive Artificial Neu- 

al Network succeeds in interpolating or fitting the three individual 

ets of training data: The learned network parameters define stress 

unctions that fit the individual tension, compression, and shear 

ata excellently with R 2 
train 

values of 0.99, 1.00, and 1.00. Second, 

or single-mode training, we observe that the network performs 

oderately at extrapolating or predicting data outside the train- 
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Table 5 

Gray and white matter models. Cortex, basal ganglia, corona radiata, and corpus callosum 

parameters learned for combined tension, compression, and shear data from Tables 1 and 2 

using the isotropic, perfectly incompressible Constitutive Artificial Neural Network with two 

hidden layers, and twelve nodes from Fig. 3 . Summary of the 12 non-zero weights w 1:2 , 7:12 and 

the coefficient of determination R 2 for training with all three tests combined. 

cortex basal ganglia corona radiata corpus callosum 

ten+com+shr ten+com+shr ten+com+shr ten+com+shr 

n = 15 , 17 , 35 n = 15 , 15 , 29 n = 18 , 18 , 36 n = 19 , 20 , 39 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 7 0.0000 0.0000 1.7880 0.1927 1.3862 0.1598 0.5635 0.1067 

w •, 8 0.0000 0.0000 0.0000 0.0000 0.2398 0.4900 0.2363 0.1383 

w •, 9 0.9875 0.6339 0.0000 0.0000 0.0000 0.0000 0.8398 0.1135 

w •, 10 2.7738 1.3702 0.9396 0.8143 0.0000 0.0000 0.9210 1.1218 

w •, 11 1.6495 1.8880 1.6193 1.1867 1.8893 1.6859 1.0628 1.0185 

w •, 12 1.4026 1.6663 0.9666 0.7932 1.1789 1.9113 0.7282 1.2621 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.3560 0.9852 0.0000 0.9739 0.0000 0.9349 0.0000 0.9209 

0.8972 0.9306 0.8646 0.9135 0.7898 0.8361 0.7847 0.8303 

Fig. 8. Gray and white matter data vs. model. Nominal stress as a function of stretch and shear strain for the isotropic, perfectly incompressible Constitutive Artificial Neural 

Network with two hidden layers, and twelve nodes from Fig. 3 . Dots illustrate the tension, compression, and shear data of all four brain regions [7] from Table 1 ; color-coded 

areas highlight the six contributions to the discovered stress function according to Fig. 3 from Table 5 . 

i

m

i

t

m

d

a

o

t

f

f

w

o

t

i  

c

e

s

r

t

r

i

t

l

w

s

i

R

c

w

t

0

b

r

u

ng regime: The network parameters trained individually for each 

ode do not predict the other modes well, with R 2 test values rang- 

ng from 0.00 for the tension prediction with compression training 

o 0.93 for the shear prediction with tension training. Third, for 

ulti-mode training with all data sets combined, the coefficient of 

etermination R 2 
train 

of the individual tests decreases to 0.36, 0.90, 

nd 0.99, while the sum of the three R 2 values, the collective fit 

f all three tests, increases. Fourth, for single-mode training, all 

welve terms of the model are activated as indicated through the 

ull color spectrum in the first three columns. At the same time, 

or for multi-mode training, the Constitutive Artificial Neural Net- 

ork discovers a model with only four terms, while the weights 

f the other terms train to zero. Strikingly, against our intuition, 

hese four terms are all functions of the second invariant [ I 2 − 3] 

nstead of the first [ I 1 − 3] , as indicated through the cold blue-type

olors. 

Table 4 and Fig. 7 summarize and illustrate the discovered mod- 

ls for the human corona radiata for the tension, compression, and 
143 
hear data from Table 2 . The white matter results from the corona 

adiata confirm the trends of the gray matter results for the cor- 

ex in Table 3 and Fig. 6 . First, for single-mode training, our neu- 

al network succeeds in interpolating or fitting the individual train- 

ng data: The learned network parameters define stress functions 

hat fit the individual tension, compression, and shear data excel- 

ently with R 2 
train 

values of 0.99, 1.00, and 1.00. Second, the net- 

ork performs moderately at extrapolating or predicting data out- 

ide the training regime: The network parameters trained for each 

ndividual mode fail to predict the other modes equally well, with 

 

2 
test values ranging from 0.00 for the tension predictions with both 

ompression and shear training to 0.83 for the shear prediction 

ith tension training. Third, we find that, for all tests combined, 

he coefficient of determination R 2 
train 

of the tensile test remains 

.00 and decreases to 0.79 and 0.93 for compression and shear, 

ut the collective fit increases. Fourth, similar to the gray matter 

esults in Fig. 6 , the white matter model trained with the individ- 

al tests in Fig. 7 activates seven, eight, and eleven terms as indi- 
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Table 6 

Gray and white matter models. Cortex, basal ganglia, corona radiata, and corpus callosum 

parameters learned for combined tension, compression, and shear data from Tables 1 and 2 

using the isotropic, perfectly incompressible Constitutive Artificial Neural Network with two 

hidden layers, and twelve nodes from Fig. 3 with additional L2 regularization for the weights. 

Summary of the four non-zero weights w 1:2 , 8:9 and the coefficient of determination R 2 for 

training with all three tests combined. 

cortex basal ganglia corona radiata corpus callosum 

ten+com+shr ten+com+shr ten+com+shr ten+com+shr 

n = 15 , 17 , 35 n = 15 , 15 , 29 n = 18 , 18 , 36 n = 19 , 20 , 39 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 8 0.4957 0.4442 0.0000 0.0000 0.4560 0.4351 0.2409 0.2367 

w •, 9 0.9840 0.7064 0.6802 0.6250 0.5614 0.4987 0.4739 0.4551 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.4590 0.9477 0.4778 0.9699 0.0000 0.9551 0.0000 0.9620 

0.7425 0.8788 0.6696 0.8588 0.5143 0.7418 0.5109 0.7276 

Fig. 9. Gray and white matter data vs. model. Nominal stress as a function of stretch and shear strain for the isotropic, perfectly incompressible Constitutive Artificial Neural 

Network with two hidden layers, and twelve nodes from Fig. 3 with additional L2 regularization for the weights. Dots illustrate the tension, compression, and shear data of 

all four brain regions [7] from Table 1 ; color-coded areas highlight the two contributions to the discovered stress function according to Fig. 3 from Table 6 . 
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ated through the broad color spectrum in the first three columns. 

nterestingly, for all three tests combined, the Constitutive Artifi- 

ial Neural Network discovers a model with only four terms, which 

re again all functions of the second invariant, [ I 2 − 3] , as indicated

hrough the cold blue-type colors. 

Table 5 and Fig. 8 summarize and illustrate the discovered mod- 

ls for the human cortex, basal ganglia, corona radiata, and cor- 

us callosum, all for multi-mode training with the tension, com- 

ression, and shear data from Tables 1 and 2 . First and foremost, 

or multi-mode training, the fit of the shear data with R 2 
train 

val- 

es of 0.99, 0.97, 0.93, and 0.92 is uniformly the best across all 

our brain regions. Second, the model universally underestimates 

he compressive stresses with R 2 values ranging from 0.78 to 0.90, 

nd overestimates the tensile stresses with R 2 values from 0.00 

o 0.36, indicating a poor fit of the tensile data. Third, and most 

mportantly, the side-by-side comparison of all four brain regions 

onfirms the trends of the cortex and the corona radiata: Our 

onstitutive Artificial Neural Network uniquely discovers a family 

f models that is parameterized in terms of the second invariant 
144 
nly , while the weights of the first invariant terms consistently 

rain to zero. The blue color spectrum in Fig. 8 underscores this 

bservation. 

Table 6 and Fig. 9 highlight the effects of the L2 regulariza- 

ion according to Eq. (23) . Compared to all oter examples without 

egularization, as expected, the regularization reduces the num- 

er of non-zero terms, in our case from six in Table 5 and Fig. 8 ,

o two for the cortex, the corona radiata, and the corpus callo- 

um, and only one for the basal ganglia. The associated non-zero 

eights, w 1 , 8 , w 2 , 8 , w 1 , 9 , w 2 , 9 , activate the linear exponential term, 

xp ([I 2 − 3]) − 1 , and the linear logarithmic term, ln (1 − [I 2 − 3]) , 

hich are highlighted in turquoise and light blue in Fig. 9 . The 

eneral trends are the same for the discovered six-term model 

ithout regularization and two-term model with L2 regularization: 

oth models depend on the second invariant only and their fits are 

est for the shear data with R 2 values well above 0.90 and worst 

or the tension data with R 2 values ranging from 0.00 to 0.48. 

Table 7 and Fig. 10 demonstrate an application of our Constitu- 

ive Artificial Neural Network beyond model discovery, the param- 
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Table 7 

Special cases of neo Hookean, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models. Cortex, basal ganglia, corona radiata, 

and corpus callosum parameters learned for combined tension, compression, and shear data from Tables 1 and 2 . Summary of the non-zero 

weights, the physics parameters μ, μ1 , μ2 , a , b, α, β , and the coefficient of determination R 2 for training with all three tests combined. 

neo Hookean Blatz Ko Mooney Rivlin Demiray Gent Holzapfel 

ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr 

n = 15 , 17 , 35 n = 15 , 17 , 35 n = 15 , 17 , 35 n = 15 , 17 , 35 n = 15 , 17 , 35 n = 15 , 17 , 35 

cortex cortex cortex cortex cortex cortex 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 1 0.7880 1.1522 – – 0.0026 0.4128 – – – – – –

w •, 2 – – – – – – 1.0529 0.8760 – – – –

w •, 3 – – – – – – – – 1.8399 0.4782 – –

w •, 5 – – – – – – – – – – 4.1833 4.7548 

w •, 7 – – 1.4156 0.6726 2.2122 0.4253 – – – – – –

μ = 1 . 8159 kPa μ = 1 . 9043 kPa μ1 = 0 . 0021 kPa a = 1 . 8447 kPa α = 1 . 7597 kPa a = 39 . 7815 kPa 

μ2 = 1 . 8817 kPa b = 1 . 0529 β = 1 . 8399 b = 4 . 1833 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.2817 0.9394 0.3627 0.9457 0.4021 0.9446 0.1360 0.9499 0.2875 0.9502 0.4845 0.9560 

0.6066 0.8195 0.7588 0.8809 0.7477 0.8784 0.6544 0.8314 0.6239 0.8264 0.5325 0.8001 

basal ganglia basal ganglia basal ganglia basal ganglia basal ganglia basal ganglia 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 1 0.4138 1.0624 – – 0.0000 0.0000 – – – – – –

w •, 2 – – – – – – 0.5829 0.7362 – – – –

w •, 3 – – – – – – – – 1.3991 0.2960 – –

w •, 5 – – – – – – – – – – 1.9013 4.7958 

w •, 7 – – 0.2628 1.6856 1.0851 0.4132 – – – – – –

μ = 0 . 8792 kPa μ = 0 . 8860 kPa μ1 = 0 . 0 0 0 0 kPa a = 0 . 8385 kPa α = 0 . 8283 kPa a = 18 . 2365 kPa 

μ2 = 0 . 8967 kPa b = 0 . 5829 β = 1 . 3991 b = 1 . 9013 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.0425 0.9684 0.3557 0.9687 0.3033 0.9689 0.1191 0.9700 0.2267 0.9719 0.2195 0.9269 

0.5812 0.8112 0.6969 0.8649 0.7104 0.8683 0.5688 0.8091 0.5494 0.8054 0.4162 0.7553 

corona radiata corona radiata corona radiata corona radiata corona radiata corona radiata 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 1 0.5157 0.91250 – – 0.0200 0.4208 – – – – – –

w •, 2 – – – – – – 0.5924 0.7693 – – – –

w •, 3 – – – – – – – – 1.0545 0.4548 – –

w •, 5 – – – – – – – – – – 3.2397 3.1842 

w •, 7 – – 0.6742 0.7087 0.5359 0.9047 – – – – – –

μ = 0 . 9412 kPa μ = 0 . 9556 kPa μ1 = 0 . 0168 kPa a = 0 . 9115 kPa α = 0 . 9592 kPa a = 20 . 6317 kPa 

μ2 = 0 . 9697 kPa b = 0 . 5924 β = 1 . 0545 b = 3 . 2397 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.0000 0.9509 0.0000 0.9520 0.0000 0.9528 0.0000 0.9517 0.0000 0.9573 0.0000 0.9373 

0.3770 0.6699 0.4977 0.7355 0.5158 0.7414 0.3567 0.6643 0.3840 0.6737 0.3604 0.6702 

corpus callosum corpus callosum corpus callosum corpus callosum corpus callosum corpus callosum 

w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , • w 1 , • w 2 , •
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] 

w •, 1 0.6521 0.4131 – – 0.0053 0.4231 – – – – – –

w •, 2 – – – – – – 0.3625 0.7162 – – – –

w •, 3 – – – – – – – – 0.3682 0.6894 – –

w •, 5 – – – – – – – – – – 1.6928 3.4100 

w •, 7 – – 0.4124 0.6932 0.7495 0.3731 – – – – – –

μ = 0 . 5388 kPa μ = 0 . 5718 kPa μ1 = 0 . 0045 kPa a = 0 . 5192 kPa α = 0 . 5077 kPa a = 11 . 5449 kPa 

μ2 = 0 . 5593 kPa b = 0 . 3625 β = 0 . 3682 b = 1 . 6928 

R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s R 2 t R 2 s 

R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc R 2 c R 2 tc 

0.0000 0.9603 0.0000 0.9577 0.0000 0.9590 0.0000 0.9606 0.0000 0.9587 0.0000 0.9199 

0.3871 0.6579 0.5485 0.7391 0.5328 0.7339 0.3570 0.6487 0.3331 0.6407 0.3739 0.6618 

145 
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Fig. 10. Special cases of neo Hookean, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models. Nominal stress as a function of stretch and shear for special cases 

of the isotropic, perfectly incompressible Constitutive Artificial Neural Network from Fig. 3 . Dots illustrate the tension, compression, and shear data of the human cortex 

[7] from Table 1 ; color-coded areas highlight the terms of the stress function according to Fig. 3 from Table 7 . 
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ter identification and comparison of special cases of the general- 

zed network according to Eqs. (16) to (21) . The first set of models,

he neo Hookean, Blatz Ko, and Mooney Rivlin models, are all lin- 

ar in terms of the first invariant, second invariant, or both; the 

econd set, the Demiray, Gent, and Holzapfel models, contain lin- 

ar exponential, linear logarithmic, or quadratic exponential terms. 

able 7 shows that each model, except for the Mooney Rivlin 

odel, activates only one term of our network, either the first, sec- 

nd, third, fifth, or seventh. For all six models, we can convert the 

eights into a stiffness-like parameter with units [kPa]; the lin- 

ar Mooney Rivlin model has an additional stiffness-like parameter, 

nd the three nonlinear models have an additional coefficient of 

onlinearity. Fig. 10 shows the behavior of the neo Hookean, Blatz 

o, Demiray, and Holzapfel models when simultaneously trained 

or the tension, compression, and shear data of the human cortex. 

otably, for the small stretch and shear strain ranges of 0 . 9 ≤ λ ≤
 . 1 and 0 . 0 ≤ γ ≤ 0 . 2 , only the Holzapfel model displays a marked

train stiffening, while the neo Hookean, Blatz Ko, and Demiray 

odels remain is their predominantly linear regimes. This allows 

he Holzapfel model to perform best not only in shear, with an R 2 

alues of 0.96, but also in tension with a value of 0.48, where most 

ther models fail. 

Fig. 11 summarizes and compares the performance of all mod- 

ls, the Constitutive Artificial Neural Network without and with 

2 regularization and its special cases, the neo Hookean, Blatz Ko, 

emiray, Gent, and Holzapfel models. The graphs in the first three 

olumns result from single-mode training with the individual ten- 

ion, compression, and shear data [7] from Tables 1 and 2 ; the last

olumn results from multi-mode training with all three data sets 

ombined. The three rows highlight the coefficients of determina- 

ion for tension R 2 t , compression R 2 c , and shear R 2 s . The color-coded

locks and error bars represent the means and standard deviations 

f the R 2 value across all four brain regions. First, in the three 

raphs on the diagonal that reflect the training of the models, the 

 

2 
train 

values of all seven models are close to one, with only three 

odels training poorly, the neo Hookean and Holzapfel models in 

ension and the Blatz Ko model in compression. Notably, our non- 

egularized Constitutive Artificial Neural Network outperforms all 

ther models and has the largest R 2 
train 

values when trained in- 
146 
ividually for tension, compression, and shear. Second, from the 

ix off-diagonal graphs that reflect the testing of the models, we 

onclude that the model and parameters trained for tension are 

enerally incapable of predicting the compression behavior and 

ice versa. However, the tension parameters are reasonably well 

uited to characterize the shear behavior, with our Constitutive Ar- 

ificial Neural Network and the Holzapfel model performing best; 

ice versa, the shear parameters are moderately suited to charac- 

erize the tensile behavior, with our Constitutive Artificial Neural 

etwork and the Blatz Ko model performing best. Finally, from 

he right column that reflects training with all three data sets 

ombined, we conclude that our Constitutive Artificial Neural Net- 

ork performs best for all three modes, followed by its L2 regular- 

zed counterpart, and the Blatz Ko model. Interestingly, we observe 

arge R 2 values across the entire bottom row, indicating that, of all 

hree tests, shear tests are generally the easiest to fit and predict 

or all seven models. Taken together, our non-regularized Constitu- 

ive Artificial Neural Network performs best in eight of all twelve 

ases, second best in two, and fifths in one suggesting that our 

roposed neural network successfully discovers both model and pa- 

ameters that best describe the data. 

. Discussion 

Characterizing human brain tissue is a challenging but im- 

ortant task. Throughout the past decade, driven by the need 

o improve diagnostic and predictive clinical tools, neuroscience 

as seen an enormous, growing interest in accurately characteriz- 

ng and modeling the human brain [4] . Numerous research groups 

ave proposed competing constitutive models to best character- 

ze the behavior of gray and white matter tissue and calibrate 

he model parameters in response to mechanical loading [14] . 

mongst the wide variety of possible models, the neo Hookean 

41] , Blatz Ko [42] , Mooney Rivlin [43,44] , Demiray [45] , Gent [46] ,

nd Holzapfel [47] models have emerged as the most successful 

andidates to approximate the stress-stretch relations in the hu- 

an brain. The gold standard strategy of all these approaches is to 

rst select a constitutive model, either from the above list or be- 

ond, and then tune its parameters by fitting the model to data. 
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Fig. 11. Goodness of fit for all models. Coefficients of determination R 2 of our Constitutive Artificial Neural Network, without and with L2 regularization, and its special 

cases, the neo Hookean, Blatz Ko, Demiray, Gent, and Holzapfel models, trained with the tension, compression, and shear data [7] from Tables 1 and 2 ; color-coded blocks 

and error bars highlight the means and standard deviations of the coefficient of determination R 2 across all four brain regions, with colors and terms according to Fig. 3 . 
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ften, these data are collected for a single loading mode–tension 

62] , compression [11] , or shear [63] –and the parameters that fit 

ne type of loading fail to predict the behavior for the other modes 

7,17] . This simplification can have fatal consequences; for exam- 

le, it could overestimate the stiffness of the brain in injury sim- 

lations. To address these limitations, our group has recently per- 

ormed a comprehensive set of human brain tissue experiments in 

ension, compression, and shear and calibrated the neo Hookean, 

ooney Rivlin, Demiray, and Gent models for four different brain 

egions, the cortex, basal ganglia, corona radiata, and corpus cal- 

osum [7,8,14] . While this approach is valuable to generate the 

est sets of parameters for existing models, some natural follow- 

p questions to ask are: How good are these models in the first 

lace? Which one of them performs best? Are there other models 

hat perform equally well, or even better? And, if so, how can we 

nd them? 

onstitutive Artificial Neural Networks are a family of neu- 

al networks that a priori satisfy thermodynamic constraints.

hen searching for generic models that could outperform tra- 

itional constitutive models, neural networks are a natural first 

hoice [24] . Neural networks have advanced as a powerful strat- 

gy to approximate data by cleverly combining nested weighted 

ctivation functions with several thousand unknowns [64] . They 

ave become the go-to strategy to interpolate data within a well- 

efined domain when the underlying physics are completely un- 

nown [25] . At the same time, as Fig. 5 indicates, classical neural 

etworks typically fail to predict the behavior outside the train- 

ng domain [28] , they violate common physical constraints, and 

heir parameters have no real physical interpretation [32] . This 

as sparked the recent trend to integrate physical information into 

lassical neural networks [31] . In the spirit of this idea, we pro- 

ose a new family of neural networks that a priori satisfy com- 

on kinematic, thermodynamic, and physical constraints. Towards 

his goal we consult the non-linear field theories of mechanics 

48,50,65] and constrain the network output to enforce thermo- 

ynamic consistency; the network input to enforce material ob- 

ectivity, and, if desired, material symmetry and incompressibility; 

he activation functions to implement physically reasonable consti- 
147 
utive restrictions; and the network architecture to ensure poly- 

onvexity. These ideas are not entirely new. Several recent net- 

ork models are designed around enforcing thermodynamic con- 

traints [27,35,38] , for example through additional terms in their 

oss function [66] . However, the problem of overfitting sparse data 

ith a large set of physically meaningless network parameters re- 

ains [36] . This raises the questions: How do we harness decades 

f knowledge in constitutive modeling to create a neural net- 

ork, from easy-to-understand modular building blocks, with well- 

efined physical parameters, that we can constrain with our do- 

ain knowledge? 

onstitutive Artificial Neural Networks can be made up of 

uilding blocks that feature prominent constitutive models. At 

 closer look, most popular constitutive models for human brain 

issue have a similar functional structure. Here we propose to 

ardwire this structure into our neural network architecture [20] . 

ur underlying design paradigm is to reverse-engineer a Consti- 

utive Artificial Neural Network that is, by design, a generaliza- 

ion of widely used and commonly accepted constitutive mod- 

ls including the neo Hookean, Blatz Ko, Mooney Rivlin, Demi- 

ay, Gent, and Holzapfel models, and a combination of their in- 

ividual terms. In Fig. 3 , we prototype this idea for an isotropic 

erfectly incompressible feed forward network with two hidden 

ayers and four and twelve nodes. This network takes the scalar- 

alued first and second invariants of the deformation gradient, 

 I 1 − 3 ] and [ I 2 − 3 ] , as input and approximates the scalar-valued

ree energy function, ψ(I 1 , I 2 ) , as output. The first layer gener-

tes the first and second powers, ( ◦ ) 1 and ( ◦ ) 2 , of the input,

nd the second layer applies the identity ( ◦ ) , the exponential, 

 exp ((◦)) − 1) , and the natural logarithm (−ln (1 − (◦))) to these 

owers. This results in twelve building blocks, and a total pos- 

ible combination of 2 12 − 1 = 4095 possible models, that addi- 

ively feed into the final free energy function ψ from which we 

erive the Piola stress, P = ∂ ψ/∂ F , following standard arguments 

f thermodynamics. This strategy is conceptually similar to a re- 

ent approach that uses sparse-regression, instead of neural net- 

orks, to discover the relevant terms from a library of physics- 

nspired constitutive building blocks [19] . It is easy to show that 
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ur network is a generalization of popular constitutive models with 

he neo Hookean [41] , Blatz Ko [42] , Mooney Rivlin [43,44] , Demi-

ay [45] , Gent [46] , and Holzapfel [47] models as special cases. 

ore importantly, through a direct comparison with these mod- 

ls in Eqs. (16) to (21) , the weights of our network gain a clear

hysical interpretation. Table 7 and Fig. 10 show, for example, that 

e recover the classical neo Hookean model with shear moduli 

f μ = 1.82kPa, 0.88kPa, 0.94kPa, 0.54kPa for simultaneous train- 

ng with the tension, compression, and shear data of the cortex, 

asal ganglia, corona radiata, and corpus callosum, which agree 

ell with the reported values of μ = 2.07kPa, 0.99kPa, 1.15kPa, 

.65kPa [7] . Interestingly, both our network and the parameter fit 

n the literature find that one of the two shear moduli of the 

ooney Rivlin model is consistently zero in all four regions, while 

he other is μ2 = 1.88kPa, 0.90kPa, 0.97kPa, 0.56kPa for our ap- 

roach compared to μ1 = 2.08kPa, 1.00kPa, 1.16kPa, 0.65kPa in the 

iterature [7] . This agrees well with other studies in which one of 

he Mooney Rivlin shear moduli was also significantly smaller than 

he other across all brain regions [17] . Fig. 10 reveals several addi- 

ional universal trends for human brain tissue: First, tension is not 

nly the most challenging test to perform [62] , but also the most 

ifficult test to fit, with R 2 values ranging from 0.14 to 0.48, fol- 

owed by compression with 0.53 to 0.76, and shear with 0.94 to 

.96. Second, when trained simultaneously for tension, compres- 

ion, and shear, all models consistently overestimate the tensile 

tiffness and underestimate the compression stiffness, highlight- 

ng the pronounced tension-compression asymmetry in all four re- 

ions of the human brain [17] . Third, of all existing models, only 

he Holzapfel model captures the nonlinear stress response [47] , 

uggesting that the classical invariant-based models struggle to re- 

roduce the nonlinear behavior of human brain tissue for small 

eformations with 0 . 9 ≤ λ ≤ 1 . 1 and 0 . 0 ≤ γ ≤ 0 . 2 . This raises the

uestion: Can we design a Constitutive Artificial Neural Network 

hat not only learns the best set of parameters for a given consti- 

utive model, but also learns the model itself? 

onstitutive Artificial Neural Networks simultaneously dis- 

over both model and parameters. In essence, we propose a rad- 

cally different approach towards soft tissue modeling and aban- 

on the common strategy to first select a constitutive model and 

hen tune its parameters by fitting the model to data [20] . In- 

tead, we propose a family of Constitutive Artificial Neural Net- 

orks, with the general architecture in Fig. 1 , specified for soft tis- 

ues in Fig. 3 , to simultaneously discover both, model and parameters 

hat best describe the data. Probing our network with the tension, 

ompression, and shear experiments from the gray matter cortex 

n Table 3 and Fig. 6 and from the white matter corona radiata in

able 4 and Fig. 7 , reveals several interesting trends: When trained 

ith all three experiments individually , the network activates all its 

welve terms, and fails to discover a single best model. Nonethe- 

ess, with these twelve terms, it succeeds in interpolating or fitting 

he training data from one experiment; however, it only performs 

oderately at extrapolating or predicting the test data from the 

ther two experiments. This suggests that the data from a single 

oading mode are not sufficient to characterize the entire breadth 

f the mechanical response of human brain which agrees well with 

bservations in the literature [7,17] . Notably, when trained with all 

hree experiments simultaneously , the Constitutive Artificial Neural 

etwork robustly discovers a single model that best approximates 

he data: For the cortex, in the last columns of Table 3 and Fig. 6 ,

he network discovers four relevant terms, while the weights of 

he other eight terms train to zero, 

(I 2 ) = 

1 

2 

μ2 [ I 2 − 3 ] 2 + 

1 

2 

a 2 
b 2 

[ exp ( b 2 [ I 2 − 3 ] 2 ) − 1 ] 

− 1 

2 

α1 

β1 

ln ( 1 −β1 [ I 2 −3 ]) −1 

2 

α2 

β2 

ln ( 1 −β2 [ I 2 −3 ] 2 ) . (28) 
148 
he non-zero weights translate into physically meaningful cortex 

arameters with well-defined physical units, the four stiffness- 

ike parameters, μ2 = 7 . 60 kPa, a 2 = 6 . 23 kPa, α1 = 1 . 25 kPa, α2 =
 . 67 kPa, and the three nonlinearity parameters, b 2 = 1 . 65 , β1 =
 . 99 , β2 = 1 . 40 . For the corona radiata, in the last columns of

able 4 and Fig. 7 , the network discovers four relevant terms, while 

he weights of the other eight terms train to zero, 

(I 2 ) = 

1 

2 

μ1 [ I 2 − 3 ] + 

1 

2 

a 1 
b 1 

[ exp ( b 1 [ I 2 − 3 ]) − 1 ] 

+ 

1 

2 

a 2 
b 2 

[ exp (b 2 [ I 2 − 3] 2 ) − 1] − 1 

2 

α2 

β2 

ln (1 − β2 [ I 2 − 3] 2 ) . 

(29) 

he non-zero weights translate into physically meaningful parame- 

ers with well-defined physical units, the four stiffness-like param- 

ters, μ1 = 0 . 44 kPa, a 1 = 0 . 24 kPa, a 2 = 6 . 37 kPa, α2 = 4 . 51 kPa, and

he three nonlinearity parameters, b 1 = 0 . 24 , b 2 = 1 . 89 , β2 = 1 . 18 .

otably, of all seven models in Fig. 11 , the Constitutive Artificial 

eural Network performs best in eight of all twelve cases, sec- 

nd best in two, and fifths in one, suggesting that it successfully 

iscovers the model and parameters that best describe the data. 

ince the network autonomously self-selects both model and param- 

ters , the human user no longer needs to decide which model to 

hoose. This could have enormous practical implications, for ex- 

mple, in finite element simulations: Instead of selecting a specific 

aterial model from a library of available models, finite element 

olvers could be designed around a single generalized model, the 

onstitutive Artificial Neural Network, which would autonomously 

iscover the model from experimental data, populate the model pa- 

ameters, and activate the relevant terms. This brings up the fi- 

al and probably most interesting question: Can we learn anything 

rom the discovery process itself? 

or human brain tissue, the Constitutive Artificial Neural Net- 

ork robustly discovers I 2 based models. Our Constitutive Arti- 

cial Neural Network combines the advantages of both, our knowl- 

dge of constitutive modeling [48–50,53–55] and the efficiency 

f neural network algorithms [29,30,64] . For insufficient training 

ata that only probe individual modes, in the three left columns 

f Figs. 6 and 7 , our network approximates the overall function 

(I 1 , I 2 ) robustly with R 2 values well above of 0.99. Yet, similar to

he classical neural network in Fig. 5 , the contributions of the indi- 

idual activation functions are non-unique. Enriching the training 

ata by multi-mode training for tension, compression, and shear 

n Table 5 and Fig. 8 eliminates this non-uniqueness. For suffi- 

iently rich data that probe all three modes combined, in the right 

olumns of Figs. 6 and 7 , our network successfully captures the 

ehavior of both gray and white matter, and consistently identifies 

he same unique subset of activation functions, without overfitting 

he data. The reduced color spectra in Fig. 8 confirm that the net- 

ork self-selects only a subset of activation functions, while most 

f its weights train to zero. For classical neural networks, a com- 

on approach to prevent overfitting is to enrich the loss function 

y L1 or L2 regularization as we suggest in Eq. (23) . For L1 regu-

arization, the discovered model and parameters are virtually iden- 

ical to the plain model in Table 5 and Fig. 8 and we do not report

hem separately here. For L2 regularization, the network robustly 

iscovers a reduced model with only two terms, a subset of the 

on-regularized models in Eqs. (28) and (29) , while the weights of 

he other terms train to zero, 

(I 2 ) = 

1 

2 

a 

b 
[ exp ( b[ I 2 − 3 ]) − 1 

2 

α

β
ln ( 1 − β[ I 2 − 3 ]) . (30)

able 6 and Fig. 9 summarize the model and parameters for the 

egularized network with two stiffness-like parameters, a and α, 

nd two nonlinearity parameters b and β . Strikingly, in multi-mode 
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raining, both the standard and L2 regularized Constitutive Artifi- 

ial Neural Networks consistently discover models in terms of the 

econd invariant only , while all terms of the first invariant train to 

ero. We can easily see this selective activation in the color-coded 

tress terms in Figs. 8 and 9 , which only display cold blue-type 

olors associated with the second invariant [ I 2 − 3] . The dominance 

f the second invariant is in stark contrast with the popularity of 

odels that only feature the first invariant, but consistent with 

bservations in the literature [17] . We hypothesize that the sec- 

nd invariant term [ I 2 − 3] , that ranges from 0.0264 in tension to

.0346 in compression is better suited to model the characteris- 

ic tension-compression asymmetry of human brain tissue than the 

rst invariant term [ I 1 − 3] , that only ranges only from 0.0282 to

.0322 for our experimental range. Last but not least, in addition 

o discovering the best model and parameters , the goodness of fit in 

ig. 11 also teaches us something about the best experiment [21] . If 

e had to select a single one experiment, tension, compression, or 

hear, Fig. 11 suggests that the tension experiment, with the largest 

 

2 values overall, would provide the richest data and the best in- 

ight into the complex behavior of human brain tissue. 

urrent limitations and future applications. In the present work, 

e demonstrate the use of Constitutive Artificial Neural Networks 

or human brain under the assumption of perfect incompressibil- 

ty and isotropy. The general concept extends naturally to com- 

ressibily or near incompressibility and to materials with other sym- 

etry classes, transverse isotropy or orthotropy , by expanding the 

etwork input to other sets of strain invariants [21] . A more ex- 

ensive extension would be to incorporate viscous effects [8] , or 

ather history-dependence or inelasticity in general, for example, by 

eplacing the feed forward architecture through a long short-term 

emory network with feedback connections [67] , while still keep- 

ng the same overall network input, output, activation functions, 

nd selectively connected architecture. Another limitation, which 

nvolves more complex changes, is the additive architecture of our 

etwork, which facilitates incorporating polyconvexity. Especially 

or human brain tissues that display a pronounced Poynting effect 

ith shear softening in tension and shear stiffening in compres- 

ion [5] , it could be beneficial to introduce a multiplicative coupling 

etween the individual invariants. Expressing the free energy as a 

runcated infinite series of products of powers of the invariants, in- 

tead of a sum of individual invariant terms, would result in a fully 

onnected feed forward network architecture for which polyconvex- 

ty is cumbersome to include a priori [57] . Another technical lim- 

tation we foresee for these more complex networks, is that the 

ajority of weights might no longer train to zero and that a more 

nvolved L1 or L2 regularization could become necessary. This could 

rtificially bias the training towards a subset of physical parame- 

ers. One interesting future direction along these lines, especially in 

iew of human brain tissue, would be to compare invariant-based 

nd principal-stretch-based Constitutive Artificial Neural Networks 

68,69] . Several recent studies suggest that principal-stretch-based 

odels outperform invariant-based models, especially in the con- 

ext of combined loading and strain-stiffening [7,15,17,28] . We are 

urrently investigating the performance of principal-stretch-based 

eural networks, both as stand alone networks, and with invariant- 

ased neural networks combined. Finally, an important extension 

ould be to embed the network in a Bayesian inference to supple- 

ent the analysis with uncertainty quantification [32] . Rather than 

raining the network on a single mean data set as we have done 

n the present study, we would then train the network on multiple 

aw data sets to account for variations across individual brains and 

cross the study population. Instead of simple point estimates for 

he network parameters, a Bayesian Constitutive Artificial Neural 

etwork would then learn parameter distributions with means and 

redible intervals . In contrast to classical Bayesian Neural Networks, 
149
ere, these distributions would have a clear physical interpretation, 

ince our network weights have a well-defined physical meaning. 

. Conclusion 

Human brain is an ultrasoft material that is difficult to test 

nd challenging to model. Numerous competing constitutive mod- 

ls for human brain tissue exist in the literature, but selecting 

he most appropriate model remains a matter of user experience 

nd personal preference. The underlying idea of this manuscript 

s to automate the process of model selection. Towards this goal, 

e formulate the problem of autonomous model discovery as a 

eural network and harness the power of gradient-based adap- 

ive optimizers for deep learning to train the network on hu- 

an brain data. However, rather than using conventional fully- 

onnected feed-forward networks, we reverse engineer a family of 

onstitutive Artificial Neural Networks with a sparsely-connected 

rchitecture from a set of modular building blocks. We rational- 

ze these building blocks from commonly accepted and widely 

sed constitutive models for soft biological tissues, including the 

eo Hookean, Mooney Rivlin, Demiray, Gent, and Holzapfel mod- 

ls. This strategy guarantees thermodynamic consistency, material 

bjectivity, material symmetry, physical restrictions, and polycon- 

exity by design. Probably even more importantly, the weights of 

ur Constitutive Artificial Neural Networks gain a clear physical in- 

erpretation and translate naturally into common mechanical pa- 

ameters. When trained with tension, compression, and shear ex- 

eriments of gray and white matter tissue, the network simul- 

aneously discovers –out of more than 4,0 0 0 possible combina- 

ions of models– one unique model and set of parameters, that 

escribe each data set better than any of the commonly used 

nvariant-based models. When constrained to its individual build- 

ng blocks, the network learns weights that translate into shear 

oduli of 1.82kPa, 0.88kPa, 0.94kPa, and 0.54kPa for the human 

ortex, basal ganglia, corona radiata, and corpus callosum which 

gree well with the reported shear moduli in these four brain re- 

ions. Taken together, Constitutive Artificial Neural Networks have 

he potential to enable automated model discovery and could in- 

uce a paradigm shift in soft tissue modeling, from user-defined to 

utomated model selection and parameterization. 

ata availability 

Our source code, data, and examples are available at https:// 

ithub.com/LivingMatterLab/CANN . 

eclaration of Competing Interest 

The authors declare that they have no conflict of interest. 

cknowledgments 

This work was supported by a DAAD Fellowship to Kevin Linka, 

y a National Science Foundation Graduate Research Fellowship to 

arah St. Pierre, by the Stanford School of Engineering Covid-19 Re- 

earch and Assistance Fund, and by Stanford Bio-X IIP seed grant to 

llen Kuhl. 

eferences 

[1] GBD, 2016 traumatic brain injury and spinal cord injury collaborators (2019) 
global, regional, and national burden of traumatic brain injury and spinal cord 

injury, 1990-2016: A systematic analysis for the global burden of disease study, 
Lancet Neurology 18 (1) (2016) 56–87 . 

[2] M.C. Dewan, A. Rattani, S. Gupta, R.E. Baticulon, Y.C. Hung, M. Punchak, 

A . Agarwal, A .O. Adeley, M.G. Shrime, A.M. Rubiano, J.V. Rosenfeld, K.B. Park, 
Estimating the global incidence of traumatic brain injury, Journal of Neuro- 

surgery 130 (4) (2018) 1080–1097 . 

https://github.com/LivingMatterLab/CANN
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0001
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0002


K. Linka, S.R. St. Pierre and E. Kuhl Acta Biomaterialia 160 (2023) 134–151 

 

 

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[3] Center for Neurological Studies, Facts about brain injury, 2019,. https://www. 
neurologicstudies.com/facts- about- brain- injury . 

[4] A. Goriely, M.G.D. Geers, G.A. Holzapfel, J. Jayamohan, A. Jerusalem, S. Sival- 
oganathan, W. Squier, J.A.W. van Dommelen, S. Waters, E. Kuhl, Mechanics of 

the brain: Perspectives, challenges, and opportunities, Biomechanics Modeling 
and Mechanobiology 14 (2015) 931–965 . 

[5] V. Balbi, A. Trotta, M. Destrade, A.N. Annaidh, Poynting effect of brain matter 
in torsion, Soft Matter 15 (2019) 5147 . 

[6] S. Budday, R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T.C. Ovaert, E. Kuhl,

Mechanical properties of gray and white matter brain tissue by indentation, 
Journal of the Mechanical Behavior of Biomedical Materials 46 (2015) 318–

330 . 
[7] S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Jaybaeck, B.M. Kohnert, 

F. Paulsen, P. Steinmann, E. Kuhl, G.A. Holzapfel, Mechanical characterization 
of human brain tissue, Acta Biomaterialia 48 (2017a) 319–340 . 

[8] S. Budday, G. Sommer, J. Hayback, P. Steinmann, G.A. Holzapfel, E. Kuhl, Rhe- 

ological characterization of human brain tissue, Acta Biomaterialia 60 (2017b) 
315–329 . 

[9] M. Hoppstadter, D. Pullmann, R. Seydewitz, E. Kuhl, M. Bol, Correlating the 
microstructural architecture and macrostructural behaviour of the brain, Acta 

Biomaterialia 151 (2022) 379–395 . 
[10] T.P. Prevost, A. Balakrishnan, S. Suresh, S. Socrate, Biomechanics of brain tissue, 

Acta Biomaterialia 7 (2011) 83–95 . 

[11] B. Rashid, M. Destrade, M.D. Gilchrist, Mechanical characterization of brain tis- 
sue in compression at dynamic strain rates, Journal of the Mechanical Behavior 

of Biomedical Materials 10 (2012) 23–38 . 
[12] J. Weickenmeier, R. de Rooij, S. Budday, P. Steinmann, T.C. Ovaert, E. Kuhl, Brain 

stiffness increases with myelin content, Acta Biomaterialia 42 (2016) 265–272 . 
[13] J. Weickenmeier, M. Kurt, E. Ozkaya, M. Wintermark, K. Butts Pauly, E. Kuhl, 

Magnetic resonance elastography of the brain: A comparison between pigs and 

humans, Journal of the Mechanical Behavior of Biomedical Materials 77 (2018) 
702–710 . 

[14] S. Budday, T.C. Ovaert, G.A. Holzapfel, P. Steinmann, E. Kuhl, Fifty shades of 
brain: A review on the material testing and modeling of brain tissue, Archives 

of Computational Methods in Engineering 27 (2020) 1187–1230 . 
[15] L.A. Mihai, L. Chin, P.A. Janmey, A. Goriely, A comparison of hyperelastic con- 

stitutive models applicable to brain and fat tissues, Journal of the Royal Society 

Interface 12 (2015) 20150486 . 
[16] L.A. Mihai, S. Budday, G.A. Holzapfel, E. Kuhl, A. Goriely, A family of hypere-

lastic models for human brain tissue, Journal of the Mechanics and Physics of 
Solids 106 (2017) 60–79 . 

[17] R. Moran, J.H. Smith, J.J. Garcia, Fitted hyperelastic parameters for human brain 
tissue from reported tension, compression, and shear tests, Journal of Biome- 

chanics 47 (2014) 3762–3766 . 

[18] N. Atanasova, L. Todorovski, S. Dzeroski, B. Kompare, Application of automated 
model discovery from data and expert knowledge to a real-world domain: 

Lake glumso, Ecological Modeling 212 (2008) 92–98 . 
[19] M. Flaschel, S. Kumar, L. De Lorenzis, Unsupervised discovery of interpretable 

hyperelastic constitutive laws, Computer Methods in Applied Mechanics and 
Engineering 381 (2021) 113852 . 

20] K. Linka, E. Kuhl, A new family of constitutive artificial neural networks to- 
wards automated model discovery, Computer Methods in Applied Mechanics 

and Engineering 403 (2023) 115731 . 

[21] K. Linka, A. Buganza Tepole, G.A. Holzapfel, E. Kuhl, Automated model dis- 
covery for skin: Discovering the best model, data, and experiment (2023), 

doi: 10.1101/2022.12.19.520979 . 
22] J. Bongard, H. Lipson, Automated reverse engineering of nonlinear dynam- 

ical systems, Proceedings of the National Academy of Sciences 104 (2007) 
9943–9948 . 

23] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental 

data, Science 324 (2009) 81–85 . 
24] J.J. Hopfield, Neural networks and physical systems with emergent collective 

computational abilities, Proceedings of the National Academy of Science 79 
(1982) 2554–2558 . 

25] M. Alber, A. Buganza Tepole, W. Cannon, S. De, S. Dura-Bernal, K. Garikipati, 
G.E. Karniadakis, W.W. Lytton, P. Perdikaris, L. Petzold, E. Kuhl, Integrating 

machine learning and multiscale modeling: Perspectives, challenges, and op- 

portunities in the biological, biomedical, and behavioral sciences, npj Digital 
Medicine 2 (2019) 115 . 

26] F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based arti- 
ficial neural networks for constitutive modeling, Journal of the Mechanics and 

Physics of Solids 147 (2021) . 04277 
27] F. As’ad, P. Avery, C. Farhat, A mechanicsnformed artificial neural network ap- 

proach in constitutive modeling, International Journal for Numerical Methods 

in Engineering 123 (2022) 2738–2759 . 
28] A. Granados, F. Perez-Garcia, M. Schweiger, V. Vakharia, S.B. Vos, A. Miseroc- 

chi, A. McEvoy, S. Duncan, R. Sparks, S. Ourselin, A generative model of hyper- 
elastic strain energy density functions for multiple tissue brain deformation, 

International Journal of Computer Assisted Radiology and Surgery. 16 (2021) 
141–150 . 

29] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a 

deep learning framework for solving forward and inverse problems involving 
nonlinear partial differential equations, Journal of Computational Physics 378 

(2019) 686–707 . 
30] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physic- 

s-informed machine learning, Nature Reviews Physics 3 (2021) 422–440 . 
150 
[31] K. Linka, M. Hillgartner, K.P. Abdolazizi, R.C. Aydin, M. Itskov, C.J. Cyron, Con- 
stitutive artificial neural networks: A fast and general approach to predictive 

data-driven constitutive modeling by deep learning, Journal of Computational 
Physics 429 (2021) 110010 . 

32] K. Linka, A. Schafer, X. Meng, Z. Zou, G.E. Karniadakis, E. Kuhl, Bayesian physic- 
s-informed neural networks for real-world nonlinear dynamical systems, Com- 

puter Methods in Applied Mechanics and Engineering 402 (2022a) 115346 . 
33] K. Linka, C. Cavinato, J.D. Humphrey, C.J. Cyron, Predicting and understand- 

ing arterial elasticity from key microstructural features by bidirectional deep 

learning by deep learning, Acta Biomaterialia 147 (2022b) 63–72 . 
34] Y. Shen, K. Chandrashekhara, W.F. Breig, L.R. Oliver, Neural network based 

constitutive model for rubber material, Rubber Chemistry and Technology 77 
(2004) 257–277 . 

35] A. Ghaderi, V. Morovati, R. Dargazany, A physics-informed assembly for feed–
forward neural network engines to predict inelasticity in cross-linked poly- 

mers, Polymers 12 (2020) 2628 . 

36] D.K. Klein, M. Fernandez, R.J. Martin, P. Neff, O. Weeger, Polyconvex anisotropic 
hyperelasticity with neural networks, Journal of the Mechanics and Physics of 

Solics 159 (2022) 105703 . 
37] C. Zopf, M. Kaliske, Numerical characterisation of uncured elastomers by 

a neural network based approach, Computers and Structures 182 (2017) 
504–525 . 

38] V. Tac, F. Sahli Costabal, A. Buganza Tepole, Data-driven tissue mechanics with 

polyconvex neural ordinary differential equations, Computer Methods in Ap- 
plied Mechanics and Engineering 398 (2022) 115248 . 

39] S. Kakaletsis, E. Lejeune, M.K. Rausch, Can machine learning acceler- 
ate soft material parameter identification from complex mechanical test 

data? Biomechanics and Modeling in Mechanobiology (2022), doi: 10.1007/ 
s10237- 022- 01631- z . 

40] G.A. Holzapfel, K. Linka, S. Sherifova, C. Cyron, Predictive constitutive mod- 

elling of arteries by deep learning, Journal of the Royal Socienty Interface 18 
(2021) 20210411 . 

[41] L.R.G. Treloar, Stresses and birefringence in rubber subjected to general homo- 
geneous strain, Proceedings of the Physical Society 60 (1948) 135–144 . 

42] P.J. Blatz, W.L. Ko, Application of finite elastic theory to the deformation of 
rubbery materials, Transactions of the Society of Rheology 6 (1962) 223–

251 . 

43] M. Mooney, A theory of large elastic deformations, Journal of Applied Physics 
11 (1940) 582–590 . 

44] R.S. Rivlin, Large elastic deformations of isotropic materials. IV. further devel- 
opments of the general theory, Philosophical Transactions of the Royal Society 

of London Series A 241 (1948) 379–397 . 
45] H. Demiray, A note on the elasticity of soft biological tissues, Journal of Biome- 

chanics 5 (1972) 309–311 . 

46] A. Gent, A new constitutive relation for rubber, Rubber Chemistry and Tech- 
nology 69 (1996) 59–61 . 

[47] G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for ar- 
terial wall mechanics and comparative study of material models, Journal of 

Elasticity 61 (20 0 0) 1–48 . 
48] S.S. Antman, Nonlinear Problems of Elasticity. Second edition, Springer-Verlag, 

New York, 2005 . 
49] G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach to Engi- 

neering, John Wiley & Sons, Chichester, 20 0 0 . 

50] C. Truesdell, W. Noll, Non-linear field theories of mechanics, in: S. Flügge (Ed.), 
Encyclopedia of Physics, Vol. III/3, Spinger, Berlin, 1965 . 

[51] J. Ghaboussi, J.H. Garrett, X. Wu, Knowledge-based modeling of material be- 
havior with neural networks, Journal of Engineering Mechanics 117 (1991) 

132–153 . 
52] R. Schulte, C. Karca, R. Ostwald, A. Menzel, Machine learning-assisted param- 

eter identification for constitutive models based on concatenated normalised 

modes, European Journal of Mechanics A/Solids (2022) . 
53] M. Planck, Vorlesungen über Thermodynamik, Verlag von Veit & Comp, 

Leipzig, 1897 . 
54] W. Noll, A mathematical theory of the mechanical behavior of continuous me- 

dia, Archive of Rational Mechanics Analysis 2 (1958) 197–226 . 
55] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, 

Archive for Rational Mechanics and Analysis 63 (1977) 337–403 . 

56] R.S. Rivlin, D.W. Saunders, Large elastic deformations of isotropic materials. VII. 
experiments on the deformation of rubber, Philosophical Transactions of the 

Royal Society of London Series A 243 (1951) 251–288 . 
57] S. Hartmann, P. Neff, Polyconvexity of generalized polynomial-type hyperelas- 

tic strain energy functions for near-incompressibility, International Journal of 
Solids and Structures 40 (2003) 2767–2791 . 

58] J.N. Fuhg, N. Bouklas, On physics-informed data-driven isotropic and 

anisotropic constitutive models through probabilistic machine learning and 
space-filling sampling, Computer Methods in Applied Mechanics and Engineer- 

ing 394 (2022) 114915 . 
59] J.N. Fuhg, N. Bouklas, R.E. Jones, Learning hyperelastic anisotropy from data via 

a tensor basis neural network, Journal of the Mechanics and Physics of Solids 
168 (2022) 105022 . 

60] P. Chen, J. Guilleminot, Polyconvex neural networks for hyperelastic consti- 

tutive models: A rectification approach, Mechanics Research Communications 
125 (2022) 103993 . 

61] A. Delfino, N. Stergiopulos, J.E. Moore, J.J. Meister, Residual strain effects on the 
stress field in a thick wall finite element model of the human carotid bifurca- 

tion, Journal of Biomechanics 30 (1997) 777–786 . 

https://www.neurologicstudies.com/facts-about-brain-injury
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0003
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0004
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0005
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0006
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0007
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0008
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0009
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0010
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0011
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0012
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0013
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0014
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0015
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0016
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0017
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0018
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0019
https://doi.org/10.1101/2022.12.19.520979
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0021
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0022
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0023
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0024
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0025
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0025
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0026
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0027
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0028
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0029
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0030
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0031
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0032
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0033
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0034
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0035
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0036
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0037
https://doi.org/10.1007/s10237-022-01631-z
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0039
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0040
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0041
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0042
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0043
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0044
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0045
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0046
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0047
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0048
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0049
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0050
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0051
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0052
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0053
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0054
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0055
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0056
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0057
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0058
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0059
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0060


K. Linka, S.R. St. Pierre and E. Kuhl Acta Biomaterialia 160 (2023) 134–151 

[

[

[
[

[  

[

[

[

62] K. Miller, K. Chinzei, Mechanical properties of brain tissue in tension, Journal 
of Biomechanics 35 (2002) 4 83–4 90 . 

63] B.R. Donnelly, J. Medige, Shear properties of human brain tissue, Journal of 
Biomechanical Engineering 119 (1997) 423–432 . 

64] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–4 4 4 . 
65] C. Truesdell, Rational Thermodynamics, Lecture 5, McGraw-Hill, New York, 

1969 . 
66] A . Daw, A . Karpatne, W. Watkins, J. Read, V. Kumar, Physics-guided neural net-

works (PGNN): An application to lake temperature modeling, 2017. Arxiv: 1710. 

11431 . 
151
67] M.A. Bhouri, F. Sahli Costabal, H. Wang, K. Linka, M. Peirlinck, E. Kuhl, 
P. Perdikaris, COVID-19 dynamics across the US: A deep learning study of hu- 

man mobility and social behavior, Computer Methods in Applied Mechanics 
and Engineering 382 (2021) 113891 . 

68] R.W. Ogden, Large deformation isotropic elasticity – on the correlation of the- 
ory and experiment for incompressible rubberlike solids, Proceedings of the 

Royal Society London Series A 326 (1972) 565–584 . 
69] S.R. St. Pierre, K. Linka, E. Kuhl, Principal-stretch-based constitutive neural net- 

works autonomously discover a subclass of ogden models for human brain tis- 

sue, bioRxiv (2023), doi: 10.1101/2023.01.14.524079 . 

http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0061
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0062
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0063
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0064
http://arxiv.org/abs/1710.11431
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0065
http://refhub.elsevier.com/S1742-7061(23)00066-1/sbref0066
https://doi.org/10.1101/2023.01.14.524079

	\advance \chk@titlecnt \@ne Automated model discovery for human brain using Constitutive Artificial Neural Networks\global \chk@titlecnt =\z@ 
	1 Motivation
	2 Methods
	2.1 Kinematics
	2.2 Constitutive equations
	2.3 Constitutive Artificial Neural Networks
	2.4 Data

	3 Results
	4 Discussion
	5 Conclusion
	Data availability
	Declaration of Competing Interest
	Acknowledgments
	References


