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Abstract

A deeper understanding to predict fracture in soft biological tissues is of crucial importance to better guide and improve medical
monitoring, planning of surgical interventions and risk assessment of diseases such as aortic dissection, aneurysms, atherosclerosis
and tears in tendons and ligaments. In our previous contribution (Gültekin et al., 2016) we have addressed the rupture of aortic tissue
by applying a holistic geometrical approach to fracture, namely the crack phase-field approach emanating from variational fracture
mechanics and gradient damage theories. In the present study, the crack phase-field model is extended to capture anisotropic
fracture using an anisotropic volume-specific crack surface function. In addition, the model is equipped with a rate-dependent
formulation of the phase-field evolution. The continuum framework captures anisotropy, is thermodynamically consistent and based
on finite strains. The resulting Euler–Lagrange equations are solved by an operator-splitting algorithm on the temporal side which
is ensued by a Galerkin-type weak formulation on the spatial side. On the constitutive level, an invariant-based anisotropic material
model accommodates the nonlinear elastic response of both the ground matrix and the collagenous components. Subsequently,
the basis of extant anisotropic failure criteria are presented with an emphasis on energy-based, Tsai–Wu, Hill, and principal stress
criteria. The predictions of the various failure criteria on the crack initiation, and the related crack propagation are studied using
representative numerical examples, i.e. a homogeneous problem subjected to uniaxial and planar biaxial deformations is established
to demonstrate the corresponding failure surfaces whereas uniaxial extension and peel tests of an anisotropic (hypothetical) tissue
deal with the crack propagation with reference to the mentioned failure criteria. Results favor the energy-based criterion as a better
candidate to reflect a stable and physically meaningful crack growth, particularly in complex three-dimensional geometries with a
highly anisotropic texture at finite strains.
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1. Introduction

The estimation of failure mechanisms in soft biological tissues is of fundamental importance for medical
monitoring and preoperative planning of diseases ranging not only from aneurysms (Humphrey and Holzapfel [1]
and Kim et al. [2]) to atherosclerosis (Chatzizisis et al. [3] and Holzapfel et al. [4]), but it also pertains to aortic
dissection (Criado [5] and Roccabianca et al. [6]) and tears in ligaments and tendons (Lee et al. [7], Weiss and
Gardiner [8] and Sharma and Maffulli [9]). However, the tangled structural composition of soft biological tissues
and the gap in our knowledge on the biochemomechanical processes occurring in the tissue at different scales still
pose a number of challenges on the modeling endeavors. Besides, the intricate in vivo loading conditions impose
conspicuous limits on computational models to characterize physically relevant failure. In our previous contribution
(Gültekin et al. [10]) we have addressed these issues by establishing a continuum framework within the context of
the crack phase-field approach and proposed a novel energy-based anisotropic failure criterion, the linchpin of any
fracture model. To date, several contributions have been made with respect to failure criteria, however, to the best of
the authors’ knowledge, none of them has touched upon the numerical comparisons of failure criteria by embedding
them into a finite element formulation at finite strains. In addition, the variety of failure criteria in terms of arguments
treated therein (e.g., free-energy functions, stress or strain tensors) makes it necessary to investigate them thoroughly,
expose their strengths and weaknesses in terms of their capability to describe an admissible failure surface and a crack
propagation which in the end leads to rupture.

Fracture of many materials is preceded and influenced by the progressive occurrence and the interaction of
various micro and macro-cracks. Therein included are soft biological tissues which behave anisotropically, a feature
originating from the complex collagenous texture embedded in a rather soft isotropic matrix. To elucidate the
phenomena of fracture, the strength of materials traditionally provides analytic relations for the failure under combined
stresses. Another approach called fracture mechanics regards the failure as a progressive process where the material is
assumed to contain flaws for which the size, shape and location determine fracture (Tsai and Hahn [11] and Talreja and
Singh [12]). Hill [13] proposed a failure criterion along the lines of von Mises and Huber to account for anisotropic
materials, a modification of which was presented by Azzi and Tsai [14], commonly referred to as the Tsai–Hill
criterion. The criterion by Tsai and Wu [15] takes different classes of materials into account, thereby conferring
a much wider spectrum which ranges from triclinic to isotropic materials. In addition, we refer to two intriguing
anisotropic failure criteria proposed mainly for composite laminates, namely the stress-invariant based criterion by
Hashin [16] and the strain-energy based criterion by Wolfe and Butalia [17], applied to small strains.

Computational modeling of fracture traditionally deals with the numerical treatment of complex crack topologies,
i.e. surface discontinuities. In this regard, numerous contributions have been proposed to date, see, e.g., cohesive
element formulations (Ortiz and Pandolfi [18] and Ferrara and Pandolfi [19,20]), element enrichment techniques
(Simo et al. [21] and Linder and Armero [22]), nodal enrichment techniques (Belytschko and Black [23], Moës
et al. [24] and Gasser and Holzapfel [25]), and energy limiter approaches (Dal and Kaliske [26]), to name but
a few. In contrast, the crack phase-field model of fracture avoids the realization of discontinuities and surmounts
the well-known shortcomings of the classical theory of brittle fracture by Griffith [27] and Irwin [28], e.g., the
determination of curvilinear crack paths and branching angles, as introduced by Francfort and Marigo [29] in the
context of a variational principle due to an energy minimization. The numerical implementation of this variational
principle conducted by Bourdin et al. [30] approximates the Mumford–Shah functional (Mumford and Shah [31])
with a framework based on the Γ -convergence theory, see Ambrosio and Tortorelli [32]. The key aspect of all these
contributions is to provide a diffusive crack topology by smearing out the sharp crack surface over a solid domain
regularized by a length-scale parameter l. Recent contributions documented by Miehe and coworkers [33,34] provide a
thermodynamically consistent and canonical algorithmic framework for the phase-field formulation for brittle fracture.
Extension of these models to dynamic brittle fracture are presented in the studies of Borden et al. [35] and Hofacker
and Miehe [36]. The phase-field approach to fracture has hitherto been successfully applied to several coupled multi-
physics problems ranging from thermoelastic–plastic to chemomechanical fracture, see, e.g., Miehe et al. [37–39].
Albeit their resemblance of gradient damage theories, crack phase-field models contain the essential ingredients of
fracture mechanics such as the critical fracture energy gc (Griffith-type critical energy release rate), see Griffith [27].
In the meantime, they act as a mediator between the aforementioned approaches, i.e. the strength of materials and the
fracture mechanics by bringing them on the same platform.

Based on the extended Cahn–Hilliard model (Cahn and Hilliard [40]), the orientation-dependent crack phase-field
evolution has been considered recently by, e.g., Li et al. [41] and Teichtmeister et al. [42] to account for the anisotropic
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surface energy emanating from the preferred directions in materials. Moreover, Clayton and Knap [43] and Nguyen
et al. [44] proposed anisotropic phase-field models for polycrystals. In several materials such as soft biological tissues
the anisotropic fracture is not only a geometrical phenomenon but also a mechanical event arisen from the fibrous
structure embedded in an otherwise isotropic matrix material which undoubtedly entails the use of an anisotropic
crack driving force. Within this context, crack phase-field applications in biomechanics can be found in Gültekin [45],
later in Gültekin et al. [10] and Raina and Miehe [46].

The paper is organized as follows. The investigation starts in Section 2 with a brief review of the underlying
geometry, kinematics and the constitutive model characterizing an anisotropic elastic response subject to degradation.
Subsequently, we pursue a variational principle for the multi-field problem of fracture and obtain the Euler–Lagrange
equations based on a power balance. The framework particularly features a viscous extended dissipation functional
to account for the rate-dependent evolution of the crack phase-field. Section 3 is then concerned with the theoretical
synopsis of the anisotropic failure criteria:

• Energy-based failure criterion
• Tsai–Wu failure criterion
• Hill failure criterion
• Principal stress failure criterion

In Section 4, we employ a staggered solution-update scheme partitioning the monolithic solution into two sub-
problems followed by a Galerkin-type weak formulation. Section 5 demonstrates the performance of the proposed
model by comparing failure surfaces and crack propagations associated with the above-stated anisotropic failure
criteria for simple yet representative boundary-value problems and loading conditions using the finite element
analysis. Sections 6 and 7 provide a discussion of the results obtained and a conclusion of the article, respectively.

2. Multi-field problem for failure in anisotropic continuum

We devote this section to phase-field modeling of fracture phenomena. To this end, the primary field variables,
namely the crack phase-field d and the deformation map ϕ, are introduced in relation to the evolution of the crack
and the balance of linear momentum, respectively. Subsequently, an account on constitutive modeling of anisotropic
hyperelastic arterial walls consisting of two families of collagen fibers is provided. Afterwards, we report on the
saddle point principle of the global power balance due to a quasi-static process of loading, and obtain the Euler–
Lagrange equations of the multi-field problem. The numerical edifice, unlike Gültekin [45] and Gültekin et al. [10],
also embodies the rate-dependent dissipation functional provided by a Perzyna-type (Perzyna [47]) viscous extension.
For the relevant nonlinear continuum mechanics used in the present paper see, e.g., the books and monographs by
Eringen [48], Truesdell and Noll [49], Spencer [50], Marsden and Hughes [51], Miehe [52], Holzapfel [53], and
Gurtin et al. [54].

2.1. Primary field variables of the multi-field problem

To describe the motion of a solid, we consider a material body at time t0 ∈ T ⊂ R+ whose reference configuration
possesses an undeformed stress-free state, and is henceforth denoted by B ⊂ R3, with the material point X ∈ B, while
∂B ⊂ R2 denotes the surface of the reference configuration B ⊂ R3. The deformed body at current time t ∈ T ⊂ R+
is then referred to as the spatial configuration designated by S ⊂ R3 with the spatial point x ∈ S. The surface of the
spatial configuration S ⊂ R3 is expressed by ∂S ⊂ R2. Accordingly, we introduce the bijective deformation map
ϕ(X, t), i.e.

ϕt (X) :
{
B × T → S,
(X, t) ↦→ x = ϕ(X, t), (1)

which maps a material point X onto a spatial point x, see Fig. 1. Note that one can also write ϕt (X) as long as t ⊂ R+
is fixed (Marsden and Hughes [51]). Having characterized the fundamental geometric map for deformations, we can
now proceed to the essential geometrical entities of the phase-field modeling. The basic geometric mapping for the
time-dependent auxiliary crack phase-field d reads

d :
{
B × T → [0, 1],
(X, t) ↦→ d(X, t), (2)
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Fig. 1. Nonlinear deformation of an anisotropic solid with the reference configuration B ∈ R3 and the spatial configuration S ∈ R3. The nonlinear
deformation map is ϕ : B × T → S, which transforms a material point X ∈ B onto a spatial point x = ϕ(X, t) ∈ S at time t . The anisotropic
micro-structure of the material point X is rendered by two families of fibers with unit vectors M and M′. Likewise, the anisotropic micro-structure
of the spatial point x is described by m and m′, as the spatial counterparts of M and M′, respectively.

which interpolates between the intact (d = 0) and the ruptured (d = 1) state of the material. The multi-dimensional
problem of fracture is basically composed of a deformable mechanical domain and a non-deformable domain of the
phase-field, as depicted in Fig. 2(a) and (b), respectively.

2.2. Kinematics

Consider the deformation map ϕ at a fixed time t , then the deformation gradient reads

F = ∇ϕ, (3)

which maps the unit tangent of a reference point onto its counterpart in the spatial configuration. The gradient operators
∇(•) and ∇x (•) denote the gradients with respect to the reference and the spatial coordinates X and x, respectively.
The deformation gradient F, its cofactor cofF = JF−T, and its Jacobian J = det F relate the deformation of the
infinitesimal line (dX and dx), the area (dA and da), and the volume (dV and dv) elements, i.e.

dx = FdX, da = cofFdA, dv = JdV . (4)

The deformations are non-penetrable for J > 0. Accordingly, we denote the symmetric right and left Cauchy–Green
tensors as

C = FTgF, b = FG−1FT, (5)

utilized as deformation measures in the reference and spatial configurations, respectively. Additionally, the continuous
three-dimensional manifolds, i.e. the reference configuration B and the spatial configuration S, are locally equipped
with the covariant reference and spatial metric tensors G = δI J EI

⊗ EJ and g = δi j ei
⊗ e j , respectively, where δI J

and δi j are simply evaluated as the Kronecker deltas. Moreover, the following three invariants

I1 = g : b, I2 =
1
2

[
I 2
1 − tr(b2)

]
, I3 = det b. (6)

account for an isotropic hyperelastic response of a solid in the spatial configuration. The anisotropic mechanical
response of the arterial tissue requires the use of additional invariants. To this end, we introduce the Eulerian form of
the structure tensors Am and Am′ as

Am = m⊗m, Am′ = m′ ⊗m′, (7)

where the micro-structure of the tissue is idealized by m and m′ as the spatial counterparts of the reference unit vectors
M and M′, as shown in Fig. 1. Thus,

m = FM, m′ = FM′, (8)
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(a) Deformation field. (b) Crack phase-field.

Fig. 2. Multi-field problem: (a) mechanical problem of deformation along with Dirichlet and Neumann-type boundary conditions actualized by
ϕ = ϕ and the Cauchy theorem σ · n = t̃, respectively; (b) evolution of the crack phase-field problem with the Neumann-type boundary condition
L∇d · N = 0.

describe two families of fibers embedded in the isotropic ground matrix. Accordingly, we introduce the (physically
meaningful) fourth and sixth invariants

I4 = m · gm, I6 = m′ · gm′ (9)

in order to capture the anisotropic response of the tissue.

2.3. Anisotropic crack phase-field model

For a non-deformable domain, the gradient operator can simply be taken as ∇x [•] = ∇[•]. Provided that an acute
crack surface topology at time t is defined by Γ (t) ⊂ R2 in the solid B through a surface integral Γ (d) =

∫
Γ dA, the

regularized crack surface Γl(d) approximated by a volume integral adopts the following three-dimensional form

Γl(d) =
∫
B
γ (d,∇d)dV, where γ (d,∇d) =

1
2l

(d2
+∇d · ∇d) (10)

designates the isotropic volume-specific crack surface (crack density) function, which satisfies the condition γ (d,Q ⋆

∇d) = γ (d,∇d), ∀Q ∈ O(3). The tensor variable Q denotes the rotations in the orthogonal group O(3), which
contains rotations and reflections, and ⋆ stands for the Rayleigh product. The length-scale parameter l controls the
breadth of the crack. This approximation can be extended to a class of anisotropic materials such that

Γl(d) =
∫
B
γ (d,∇d;L)dV, where γ (d,∇d;L) =

1
2l

(d2
+∇d ·L∇d) (11)

is the anisotropic volume-specific crack surface (crack density) function, which satisfies the condition γ (d,Q⋆∇d) =
γ (d,∇d), ∀Q ∈ G ⊂ O(3), where G designates a symmetry group as a subset of O(3). The second-order anisotropic
structure tensor L is given as

L = l2[I+ ωM(M⊗M)+ ωM′ (M′ ⊗M′)], (12)

which aligns the evolution of the crack according to the orientation of fibers in the continuum, see Fig. 3. Therein, the
anisotropy parameters ωM and ωM′ regulate the transition from weak to strong anisotropy for two families of fibers.
For isotropic solids, the parameters ωM = ωM′ are zero, whereas for a general anisotropic continuum with several
family of fibers, they must lie in an open range, i.e. −1 < ωi < ∞ where i ∈ {M,M′, . . .} in order to satisfy the
ellipticity condition for Γl(d). Following this, we can state the minimization principle

d(X, t) = Arg
{

inf
d∈WΓ (t)

Γl(d)
}
, (13)

along with the Dirichlet-type boundary constraint

WΓ (t) = {d|d(X, t) = 1 at X ∈ Γ (t)}. (14)
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(a) L = l2I. (b) L = l2(I+ e1 ⊗ e1). (c) L = l2(I+M⊗M).

Fig. 3. (a) Isotropic damage field; (b) anisotropic damage field with fiber angle α = 0◦; (c) anisotropic damage field with α = 45◦.

Upon the minimization of the regularized crack surface functional we derive the Euler–Lagrange equations according
to

1
l

(d −∇d ·L∇d) = 0 in B, and L∇d · N = 0 on ∂B, (15)

where the divergence term interpolates d between the intact and the ruptured state of the material. In (15)2 N denotes
the unit surface normal oriented outward in the reference configuration.

2.3.1. The concept of effective length scale
The anisotropic structure tensor L defined in (12) motivates the concept of effective length scale parameter which

can be represented by polar plots (Teichtmeister et al. [42]) in the sense of the surface energy gcΓl(d) and its reciprocal
(Li et al. [41] and Nguyen et al. [44]), where gc is referred to as the critical fracture energy (Griffith-type critical energy
release rate). To this end, imagine the sharp crack Γ ∈ B to be the parametric curve XΓ (ζ ) traced out by the parameter
ζ , i.e. ζ → XΓ (ζ ) so that the position of ∀X ∈ B can be uniquely determined by

X(ζ, ν) = XΓ (ζ )+ νeν . (16)

The base vectors eζ and eν denote the respective unit tangent and the normal at point XΓ (ζ ), and establish the local
coordinate system (ζ, ν) alongside the global Cartesian system (x, y), see Fig. 4(a). Now, let the angle between the
x-axis and the tangent of the crack at position XΓ (ζ ) be φ = ̸ (ex , eζ ), while the angle between the orientation M of
a family of fibers and the x-axis is denoted by α = ̸ (ex ,M). Then, by assuming the effective length scale parameter
le to be sufficiently small compared with the length of the sharp crack |Γ | we arrive at

le(φ, α) = l2[1+ ωM cos(φ − α)+ ωM′ sin(φ − α)] (17)

for an orthotropic case, where the second family of fibers M′ is aligned perpendicular to the first fiber family M, see
Fig. 4(a).

Fig. 4(b)–(d) depicts the polar plots of the effective length scale parameter le(φ, α), as introduced in (17), for
specific choices of ωM and ωM′ . Specifically, the plot denoted by (∗) in Fig. 4(c) recovers the transversely isotropic
distribution of the effective length scale parameter for ωM′ = 0.5 and vanishing ωM. Another feature of the model is
discernable by the plot (∗∗) in Fig. 4(d), where the effective length scale parameter le renders isotropy with a wider
range (le = 1.5l) for ωM = ωM′ ≡ 0.5. This feature is the natural consequence of the second-order phase-field models
providing a two-fold symmetry unlike the fourth-order phase-field models conferring a four-fold symmetry, a more
detailed discussion can be found in Remark 1.

Remark 1. A fourth-order crack phase-field approach to fracture has been recently proposed by Borden et al. [55]
for isotropic solids. Anisotropic extensions of this fourth-order model are suggested by, e.g., Li et al. [41] and
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(a) (b)

(c) (d)

Fig. 4. (a) Geometric profile of the sharp crack Γ ∈ B at point XΓ (ζ ) together with the global and local coordinates systems (x, y) and (ζ, ν),
respectively. Polar plots of the effective length scale parameter le(φ, α) shown for an orthotropic case (M ⊥ M′) in (17), with the anisotropy
parameter (b) ωM = −0.5; (c) ωM = 0.0; (d) ωM = 0.5. The values assumed by the other anisotropy parameter ωM′ are shown in color (see the
legend).

Teichtmeister et al. [42]. In such a case, the anisotropic crack density function in (11)2 can be recast into a more
general form, i.e.

γ (d,∇d,∇2d;L,L) =
1
2l

d2
+

l
4
∇d ·L∇d +

l3

32
∇

2d : L : ∇2d, (R1.1)

where ∇2d and L stand for the second gradient of the phase-field and a fourth-order anisotropic structure tensor,
respectively. Insertion of (R1.1) into (11)1 together with the minimization principle (13) yields

d −
l2

2
∇d ·L∇d +

l4

16
Div[Div(L : ∇2d)] = 0, (R1.2)
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along with the Neumann-type boundary constraints

[L∇d +
l2

8
Div(L : ∇2d)] · N = 0 on ∂B, and L : ∇2d · N = 0 on ∂B. (R1.3)

The numerical implementation of the above-stated fourth-order approach requires C1-continuous shape functions
for a conforming approximation, an arduous task for 3-dimensional analyses. An account on the alternative treatment
circumventing the C1-continuity requirement is provided by Teichtmeister et al. [42]. Higher-order approaches
become particularly relevant for strongly anisotropic materials for which energetically preferable zig-zag crack
patterns are observable. However, its relevance to soft biological tissues is dubious as they seem to exhibit weak
anisotropy. This is justified by a phenomenon called aortic dissection where the nascent crack in the medial layer of
an aorta propagates either axially or helically following the orientation of one fiber family regardless of the existence
of other fiber families. Therefore, our modeling endeavors are confined to use a second-order anisotropic crack phase-
field approach.

2.4. Constitutive modeling of artery walls

In order to reflect the local anisotropic mechanical behavior of the hypothetically intact arterial wall, we postulate a
specific form of the effective Helmholtz free-energy function split into the effective isotropic Ψ iso

0 and the anisotropic
Ψ ani

0 parts,

Ψ0(g,F,Am,Am′ ) = Ψ iso
0 (g,F, J )+Ψ ani

0 (g,F,Am,Am′ ). (18)

The effective isotropic part Ψ iso
0 and the anisotropic part Ψ ani

0 are functions of the invariants such that

Ψ iso
0 (g,F, J ) = Ψ̂ iso

0 (J, I1), Ψ ani
0 (g,F,Am,Am′ ) = Ψ̂ ani

0 (I4, I6), (19)

for which the following neo-Hookean form

Ψ̂ iso
0 (J, I1) = κ(J − ln J − 1)+

µ

2
(I1 − 2 ln J − 3) (20)

represents the mechanical response of the ground matrix, whereas the exponential form

Ψ̂ ani
0 (I4, I6) =

k1

2k2

∑
i=4,6

{exp[k2(Ii − 1)2]− 1} (21)

represents the elastic response of the two distinct families of collagen fibers (Holzapfel et al. [56]). In (20) κ and µ
denote the bulk modulus and the shear modulus, respectively, whereas the anisotropic term (21) involves k1 and k2

representing a stress-like material parameter and a dimensionless parameter, respectively. Note that (21) contributes
to the mechanical response provided that the concerning family of fibers is under extension, i.e. when I4 > 1 or
I6 > 1. To implement the constitutive model in a typical implicit finite element program, we require the stress tensor
and its sensitivity with respect to the associated deformation measure. Exploiting the Coleman–Noll procedure on
the Clausius–Planck inequality, and using the decoupled form of the effective free energy Ψ0 in (18), the effective
Kirchhoff stress tensor τ 0 is obtained as

τ 0 = 2∂gΨ0 = τ iso
0 + τ ani

0 . (22)

The effective Kirchhoff stress τ 0 due to the isotropic and anisotropic contributions, i.e. τ iso
0 and τ ani

0 , defined in (22),
are

τ iso
0 = 2∂gΨ

iso
0 = p̂g−1

+ µ(b− g−1), τ ani
0 = 2∂gΨ

ani
0 = 2ψ4m⊗m+ 2ψ6m′ ⊗m′, (23)

where the penalty term reads p̂ = κ(J − 1). The deformation-dependent scalar coefficients ψ4 and ψ6 are defined as

ψ4 = ∂I4Ψ0 = k1(I4 − 1) exp[k2(I4 − 1)2], ψ6 = ∂I6Ψ0 = k1(I6 − 1) exp[k2(I6 − 1)2]. (24)

The sensitivity of the effective Kirchhoff stress tensor is established by the spatial elasticity tensor C0. Thus,

C0 = 4∂2
ggΨ0 = 2∂gτ 0 = C0

iso
+ C0

ani, (25)
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in which the effective elasticity tensor Ciso
0 due to the isotropic part reads

Ciso
0 = ( p̂ + κ)g−1

⊗ g−1
− 2( p̂ − µ)Ig−1 . (26)

Therein, the symmetric fourth-order identity tensor Ig−1 has the following index form (Ig−1 )i jkl
= (δikδ jl

+ δilδ jk)/2.
In (25) C0

ani describes the anisotropic part of the effective elasticity tensor, which can be expressed as

C0
ani
= 4ψ44M+ 4ψ66M

′, (27)

with the scalar coefficients ψ44 and ψ66 defined as

ψ44 = ∂I4Ψ4 = k1[1+ 2k2(I4 − 1)2] exp[k2(I4 − 1)2],
ψ66 = ∂I6Ψ6 = k1[1+ 2k2(I6 − 1)2] exp[k2(I6 − 1)2].

(28)

Finally, the fourth-order structure tensors in (27) take on the following forms

M = m⊗m⊗m⊗m, M′ = m′ ⊗m′ ⊗m′ ⊗m′. (29)

2.5. Continuous variational formulation based on power balance

This part is concerned with the saddle point principle of the global power balance which yields the coupled Euler–
Lagrange equations governing the evolution of the crack phase-field in (i) a rate-independent and (ii) a rate-dependent
setting, the balance of linear momentum. We first consider the Helmholtz free-energy function Ψ for a degrading
continuum according to

Ψ (g,F,Am,Am′; d) = g(d)Ψ0(g,F,Am,Am′ ), (30)

where Ψ0 is the effective Helmholtz free-energy function of the hypothetically intact solid according to (18). In (30)
the monotonically decreasing quadratic degradation function g has the form

g(d) = (1− d)2. (31)

It describes the degradation of the solid/tissue with the evolving crack phase-field parameter d subject to the growth
conditions

g′(d) ≤ 0 with g(0) = 1, g(1) = 0, g′(1) = 0. (32)

The first condition ensures degradation, while the second and third conditions set the limits for the intact and the
ruptured state, and the final condition ensures the saturation of g(d) as d → 1. With this at hand, we can further
describe the isotropic and the anisotropic parts of the free-energy function Ψ = Ψ̂ iso

+ Ψ̂ ani for a degrading material,
i.e.

Ψ̂ iso(J, I1; d) = g(d)Ψ̂ iso
0 (J, I1), Ψ̂ ani(I4, I6; d) = g(d)Ψ̂ ani

0 (I4, I6), (33)

respectively. Nevertheless, g(d) may assume an entirely generic form and may be divided into an isotropic and an
anisotropic part, as pointed out in Remark 2.

Remark 2. We hereby present two possible generic forms for the degradation function g(d) in (31) such that

g(d) = b[ (1− d)a
− (1− d)a−1 ]+ a(1− d)a−1

− (a − 1)(1− d)a, (R2.1)

as an extension of the cubic degradation function suggested by Borden et al. [57], and

g(d) = (1− d)a, (R2.2)

expanding the quadratic form (31). The exponent a and the coefficient b in (R2.1) appear as model and control
parameters regulating the softening behavior of the material and the slope of g(d), respectively, see Fig. 5(a)–(c).
They are bounded such that a ≥ 2 and 0 ≤ b ≤ 2 to guarantee a monotonic decrease of g(d). The exponent a in
(R2.2), however, accepts values a > 0 to ensure the monotonic reduction of the bulk response, see Fig. 5(d). The
values a = 3 and b = 2 in (R2.1) retrieves the g(d) used in various crack phase-field models, see, e.g., Bourdin
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(a) (b)

(c) (d)

Fig. 5. Qualitative behavior of the degradation function g(d) vs d: (a) b = 0; (b) b = 1; (c) b = 2, according to (R2.1), while for (R2.2) g(d) is
stated in (d).

et al. [58] and Miehe et al. [33], whereas a = 2 reproduces the same for (R2.2). The classical continuum damage
model (Kachanov [59]) is also a special case of (R2.2) for a = 1. Fig. 5 reveals the qualitative behavior of the generic
form of g(d) due to (R2.1) and (R2.2).

In view of the above-mentioned formalism, distinct degradation functions as to the isotropic and the anisotropic
free-energy contributions may become particularly meaningful in soft biological tissues. To this end, we conjecture
on (R2.1), i.e.

giso(d) = biso[ (1− d)aiso − (1− d)aiso−1 ]+ aiso(1− d)aiso−1
− (aiso − 1)(1− d)aiso , (R2.3)

and

gani(d) = bani[ (1− d)aani − (1− d)aani−1 ]+ aani(1− d)aani−1
− (aani − 1)(1− d)aani , (R2.4)
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which account for the distinct stress softening behavior of the continuum according to the isotropic and anisotropic
parameters aiso, biso, aani, bani, respectively. Hence, (R2.2) can be split as follows

giso(d) = (1− d)aiso and gani(d) = (1− d)aani . (R2.5)

The parameters may be adjusted in accordance with experimental observations which are rather scarce. Since the
focus of this manuscript is largely confined to the analysis of anisotropic failure criteria, further insight into the
generic degradation functions is spared as a major subject matter for another article.

2.5.1. Rate of energy storage functional in an anisotropic solid and the external power functional
As a point of departure, we define the energy storage functional E of an anisotropic hyperelastic solid as

E(ϕ, d) =
∫
B
Ψ (g,F,Am,Am′; d)dV, (34)

by considering the contributions of the free-energy function in (33). The time derivative of (34) gives the rate of energy
storage functional E , i.e.

E =
∫
B

(τ : g∇x ϕ̇ − f ḋ)dV, (35)

with the Kirchhoff stress tensor τ and the energetic force f defined as

τ = g(d)τ 0, f = −∂dΨ (g,F,Am,Am′; d), (36)

where τ 0 is expressed in (22). We emphasize that the energetic force f is the work conjugate to d. Subsequently, the
external power functional P can be described as

P(ϕ̇) =
∫
B
ρ0γ̃ · ϕ̇dV +

∫
∂Bt

t̃ · ϕ̇da, (37)

where ρ0, γ̃ and t̃ represent the material density, the prescribed body force and the spatial surface traction, respectively.

2.5.2. Rate-independent crack dissipation functional with threshold function
To account for the energy dissipated in the continuum, the dissipation functional D is introduced as

D(ḋ) =
∫
B

gc[δdγ (d,∇d;L)] ḋ dV, (38)

where δdγ denotes the variational derivative of the anisotropic volume-specific crack surface γ , whereas gc is referred
as the critical fracture energy (Griffith-type critical energy release rate), see Miehe et al. [33] and Gültekin et al. [10].
The second law of thermodynamics strictly demands that the dissipation functional has to be non-negative for all
admissible deformation processes (D ≥ 0). This thermodynamic inequality is a priori fulfilled by a constitutive
dissipation function Φ featuring a positive and convex propensity (Miehe [60] and Miehe and Schänzel [61]). This
function can readily be stated by the principle of maximum dissipation via the following constrained optimization
problem

Φ(ḋ; d,∇d) = sup
β∈E

βḋ, (39)

which can be solved by a Lagrange method that leads to

Φ(ḋ; d,∇d) = sup
β,λ≥0

[βḋ − λtc(β; d,∇d)], (40)

in terms of the local driving force β, dual to ḋ, and λ is the Lagrange multiplier that enforces the constraint.
Additionally, we have defined the threshold function tc delineating a reversible domain E such that

E(β) = {β ∈ R | tc(β; d,∇d) = β − gc[δdγ (d,∇d;L)] ≤ 0}. (41)

Based on (40) the extended dissipation functional Dλ reads

Dλ(ḋ, β, λ; d) =
∫
B

[βḋ − λtc(β; d,∇d)]dV . (42)
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2.5.3. Rate-independent variational formulation based on power balance
A summation of the aforestated functionals (35), (37) and (42) for the description of a rate-type potential Πλ

provides the power balance, i.e.

Πλ = E +Dλ − P. (43)

On the basis of the rate-type potential (43), we introduce the saddle point principle for the quasi-static process, i.e.

{ϕ̇, ḋ, β, λ} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈Wḋ

sup
β,λ≥0

Πλ

}
, (44)

with the admissible domains for the primary variables

Wϕ̇ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ}, Wḋ = {ḋ | ḋ = 0 on ∂Bd}. (45)

The variation of the functional Πλ leads to the Euler–Lagrange equations describing the multi-field problem for the
rate-independent fracture of an anisotropic hyperelastic solid, i.e.

1: Jdiv(J−1τ )+ ρ0γ̃ = 0,
2: β − f = 0,
3: ḋ − λ = 0,

(46)

along with the Karush–Kuhn–Tucker-type loading–unloading conditions ensuring the principal of maximum dissipa-
tion for the case of an evolution of the crack phase-field parameter d, i.e.

λ ≥ 0, tc ≤ 0, λtc = 0. (47)

In addition, Neumann-type boundary conditions can be defined as follows

J−1τ · n = t̃, L∇d · N = 0, (48)

where n and N represent the unit surface normal oriented outwards in the spatial and the reference configuration,
respectively. The elimination of β and λ through (46)2,3 and the explicit form of the threshold function tc result in

ḋ ≥ 0, f − gcδdγ (d,∇d;L) ≤ 0, [ f − gcδdγ (d,∇d;L)]ḋ = 0. (49)

The first condition ensures the irreversibility of the evolution of the crack phase-field parameter. The second condition
is an equality for an evolving crack, and is negative for a stable crack. The third condition is the balance law for the
evolution of the crack phase-field subjected to the former conditions.

2.5.4. Rate-dependent variational formulation based on power balance
The viscous regularization of the rate-independent modality essentially confers stability on the algorithmic setting,

a benefit which is purely related to numerics. To this end, we introduce a Perzyna-type (Perzyna [47]) viscous
extension of the dissipation functional, i.e.

Dη(ḋ, β; d) =
∫
B

[βḋ −
1

2η
⟨tc(β; d,∇d)⟩2]dV, (50)

where the viscosity η determines the viscous over-force governing the evolution of ḋ . In (50) the positive values for
the threshold function tc are always filtered out owing to the ramp function ⟨x⟩ = (x + |x |)/2. Accordingly, the
corresponding viscous rate-type potential reads

Πη = E +Dη − P. (51)

On the basis of the rate-type potential (51), we propose a viscous extended saddle point principle for the quasi-static
process, i.e.

{ϕ̇, ḋ, β} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈Wḋ

sup
β≥0

Πη

}
, (52)
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with the admissible domains for the primary state variables as given in (45). Evaluating the variation of the potential Πη

we obtain the coupled set of Euler–Lagrange equations for the rate-dependent fracture of an anisotropic hyperelastic
solid as

1: Jdiv(J−1τ )+ ρ0γ̃ = 0,
2: β − f = 0,

3: ḋ −
1
η
⟨tc(β; d,∇d)⟩ = 0.

(53)

Substituting f into β, the explicit form of the threshold function tc recasts the equality (53)3 in such a form

f = ηḋ + gcδdγ (d,∇d;L). (54)

The rate-independent case is recovered for η→ 0. Note that the Perzyna-type viscous extension transforms the local
driving force β such that it becomes unbounded, which enables β to take values outside the domain E in (41). This
domain is originally described in elasto-visco-plasticity and continuum damage models, see Miehe [62] and Simo and
Hughes [63] among others, and later in the crack phase-field models of Miehe et al. [33] and Miehe and Schänzel [61].

3. Theoretical aspects of anisotropic failure criteria

Focusing on the rate-independent case (54), for η → 0, we engage ourselves in building a general framework for
the crack phase-field model into which distinct failure criteria can easily be incorporated. We start by elaborating on
the energetic force (36)2. Accordingly, we substitute Eqs. (31) and (33) into (36)2 to arrive at

f = 2(1− d)Ψ0. (55)

Inserting (55) into (54) for the rate-independent case and adopting (15)1, the following relation holds

2(1− d)
Ψ0

gc/ l
= d −∇d ·L∇d, (56)

whereby one can define the dimensionless crack driving force

H =
Ψ0

gc/ l
, (57)

which already characterizes a criterion for general isotropic materials. Another important feature of (57) is that the
dimensionless characteristics of H, as discussed by Miehe et al. [37], allows to incorporate different types of failure
criteria which we will address in the forthcoming sections. Following this, we stipulate two significant conditions,
i.e. the irreversibility of the crack preventing healing effects, and the positiveness of the crack driving force ensuring
that the crack growth solely takes place upon loading. Thus,

H(t) = max
s∈[0,t]

[
⟨H(s)− 1⟩

]
. (58)

The above ramp-type function is described by the Macaulay brackets which filter out the positive values for H(s)− 1
and keeps the solid intact below a threshold value, i.e. until the failure surface is reached; therefore, the crack phase-
field does not evolve for H(s) < 1. We also note that (58) always takes into account the maximum value of H̄(s)− 1
in the deformation history thereby ensuring the irreversibility of cracking. With these adjustments, (56) now takes on
the form

2(1− d)H = d −∇d ·L∇d, (59)

where the right-hand side of (59) is the geometric resistance to crack whereas the left-hand side is the local source
term for the crack growth (Miehe et al. [37]). Bearing this in mind, we recall the rate-dependent case for η ̸= 0, i.e.

ḋ =
1
η

[2(1− d)H− d +∇d ·L∇d], (60)
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which compares to (54) with the replacement of the dimensional energetic force by the dimensionless failure Ansatz,
the cornerstone of the crack phase-field model. We emphasize that the variational formulation in Section 2 does not
apply to cases where stress-based failure criteria are incorporated into the crack phase-field evolution (60). In other
words, stress-based criteria, as described in Section 3.2–3.4, can only be added on a rather ad hoc basis.

3.1. Energy-based anisotropic failure criterion

The phase-field approach outlined in (53) induces anisotropic failure because of (i) an anisotropic constitutive
response and (ii) an anisotropic crack surface energy function. However, the crack driving force H has a single
threshold energy gc/ l for all directions. This is a strong restriction and does not comply with the physically observed
phenomenon. In order to characterize anisotropic failure in arterial walls, we have recently proposed a novel energy-
based anisotropic failure criterion (Gültekin et al. [10]). This proposed approach is now further elaborated in the
present paper.

We start with the assumption that two distinct failure processes governing the cracking of the ground matrix and
the fibers, whereby the anisotropic structure tensor L, as introduced in (12), also assumes a distinct form such that

Liso
= l2I, Lani

= l2[ωM(M⊗M)+ ωM′ (M′ ⊗M′)], (61)

which modifies (56) to account for the distinct failure assumption. Thus,

f iso
−

giso
c

l
(d −∇d ·Liso∇d) = 0, f ani

−
gani

c

l
(d −∇d ·Lani∇d) = 0. (62)

Note that the energetic force f in (55) is additively decomposed into an isotropic part f iso and an anisotropic part f ani

such that

f iso
= 2(1− d)Ψ̂ iso

0 , f ani
= 2(1− d)Ψ̂ ani

0 . (63)

In (62) we have introduced the critical fracture energies over the length scale, namely giso
c / l for the ground matrix and

gani
c / l for the fibers, which are dual to the effective free-energy functions delineating the isotropic and the anisotropic

response, respectively. Insertion of (63) into (62) leads to

2(1− d)
Ψ̂ iso

0

giso
c / l

= d −∇d ·Liso∇d, 2(1− d)
Ψ̂ ani

0

gani
c / l

= d −∇d ·Lani∇d. (64)

According to the structure of (62) we need to define dimensionless crack driving forces for the isotropic part Hiso

and the anisotropic part Hani
such that H = Hiso

+Hani
. Thus,

Hiso
=

Ψ̂ iso
0

giso
c / l

, Hani
=

Ψ̂ ani
0

gani
c / l

. (65)

Superposing the isotropic and anisotropic failure processes (64) with the use of (65), we obtain (1 − d)H =

d − (∇d ·L∇d)/2. Since H = Hiso
+Hani

enters in (58) we can rewrite it as

(1− d)H = d −
1
2
∇d ·L∇d, (66)

for the rate-independent case, where the irreversibility of the crack growth is enforced by (58). Without loss of
generality, the rate-dependent case can be shown, i.e.

ḋ =
1
η

[(1− d)H− d +
1
2
∇d ·L∇d]. (67)

The crack phase-field parameter d in (66) and (67) can be considered as a homogenized damage parameter for the
anisotropic continuum consisting of matrix and two families of fibers. Nevertheless, one can also envisage n distinct
failure processes for the anisotropic part, with n distinct fiber families, i.e. each fiber family may undergo a separate
failure process. In that case, the evolution equation for the crack phase-field parameter then reads

ḋ =
1
η

[
2

n + 1
(1− d)H− d +

1
n + 1

(∇d ·L∇d)
]
, with L = Liso

+

n∑
i

Lani
i . (68)
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3.2. Stress-based anisotropic Tsai–Wu failure criterion

The Tsai–Wu criterion is based on the strength of the material at which the stress space intercepts the assumed
failure surface (Tsai and Wu [15]). Accordingly, the dimensionless crack driving force (57) with respect to the effective
Cauchy stress tensor σ 0 assumes the following composition of two scalar functions, i.e.

H = T : σ 0 + σ 0 : T : σ 0, (69)

where T denotes a second-order strength tensor while T is a fourth-order strength tensor. In the crack phase-field model
of fracture the crack driving force (69) can easily be incorporated into (58). Note that the principal axes of anisotropy
lie on the reference axes – an appropriate transformation can be obtained by rotating the stress components. Through
the exploitation of the major and minor symmetries of the strength tensors T and T they can be expressed in matrix
notation as

[T] =

⎡⎢⎢⎢⎢⎢⎢⎣
T1
T2
T3
T4
T5
T6

⎤⎥⎥⎥⎥⎥⎥⎦ , [T] =

⎡⎢⎢⎢⎢⎢⎢⎣
T11 T12 T13 T14 T15 T16

T22 T23 T24 T25 T26
T33 T34 T35 T36

sym T44 T45 T46
T55 T56

T66

⎤⎥⎥⎥⎥⎥⎥⎦ , (70)

which fall into the triclinic class of material symmetry for a fully anisotropic material. The numbers of independent
strength components render 6 and 21, for (T)i and (T)i j , respectively, where i, j ∈ {1, . . . , 6} (Tsai and Wu [15]).
Other classes of symmetry relations, e.g., monoclinic, orthotropic, transversely isotropic, cubic and isotropic materials
can also be characterized with the help of the strength tensors. In fact, the transformation relations are carried out
in accordance with the classical approach to anisotropy, i.e. making use of invariant restrictions to the free-energy
function, stress and elasticity tensors.

A particular stability condition is imposed on the strength components of the Tsai–Wu criterion to enforce an
ellipsoidal failure surface which necessitates the positive-definiteness of the fourth-order strength tensor such that

Ti i T j j − T 2
i j ≥ 0, (71)

where repeated indices are not summations. In addition, the diagonal terms of the fourth-order strength matrix must
be positive so that they become physically meaningful. The symmetry relations endow the model with a feature that
causes a number of interaction terms in the fourth-order strength matrix to vanish. As a matter of fact, no interaction
exists between the normal/shear components and between the shear/shear components in the off-diagonal terms of the
fourth-order strength matrix for an orthotropic material. In particular, the following components would then vanish:

T14 = T24 = T34 = T15 = T25 = T35 = T45 = T16 = T26 = T36 = T46 = T56 ≡ 0. (72)

Having identified the simplifications due to symmetry relations, we now proceed to other assumptions which involve
further simplifications on the strength matrices [T] and [T]. First, it is assumed that the failure strength remains the
same due to a change in the sign of the normal or the shear stress which yields

T1 = T2 = T3 = T4 = T5 = T6 ≡ 0, (73)

thereby rendering the second-order strength matrix [T] obsolete. For a detailed derivation, we refer to Tsai and
Wu [15]. This assumption also brings forth the following definition

Ti i =
1

(σ u
i )2 , (74)

for the diagonal terms of the fourth-order strength matrix which are related to the ultimate normal and shear stresses
σ u

i , with i ∈ {1, . . . , 6}. The off-diagonal terms emanating from the interaction of normal stresses, namely T12, T13
and T23, can be ignored, as they are equal to zero, as suggested by Pipes and Cole [64]. On the other hand, Tsai and
Hahn [11] proposed an alternative way to identify these terms, i.e.

T12 = −

√
T11T22

4
, T13 = −

√
T11T33

4
, T23 = −

√
T22T33

4
. (75)
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3.3. Stress-based anisotropic Hill failure criterion

Postulated on the basis of the well-known von Mises–Huber criterion, the anisotropic Hill criterion (Hill [13]) uses
the following quadratic form of the dimensionless crack driving force (defined in (57))

H = σ vm
0 : T : σ

vm
0 , (76)

where σ vm
0 represents the effective von Mises stress tensor. The components of σ vm

0 can be defined in terms of general
stress components, i.e.

σ vm
01
= σ01 − σ02 , σ vm

02
= σ02 − σ03 , σ vm

03
= σ03 − σ01 , (77)

for the effective normal stresses. The effective shear stress components of σ vm
0 are given as

σ vm
04
= σ04 , σ vm

05
= σ05 , σ vm

06
= σ06 . (78)

Note that in (76) the principal axes of anisotropy are chosen to be the reference axes. However, transformations can
also be carried out by rotating the stress components. To characterize the current state of anisotropy, the matrix form
of the fourth-order strength tensor T has only non-zero terms in the diagonal, i.e.

T11 =
1
2

[
1

(σ u
1 )2 +

1
(σ u

2 )2 −
1

(σ u
3 )2

]
,

T22 =
1
2

[
1

(σ u
2 )2 +

1
(σ u

3 )2 −
1

(σ u
1 )2

]
,

T33 =
1
2

[
1

(σ u
3 )2 +

1
(σ u

1 )2 −
1

(σ u
2 )2

]
,

(79)

which relate to the effective normal stresses. In addition, (79) accounts for the interactions between the effective
normal stresses. The terms connected to the effective shear stresses are given by

T44 =
1

4(σ u
4 )2 , T55 =

1
4(σ u

5 )2 , T66 =
1

4(σ u
6 )2 . (80)

Significant features of the Hill criterion are that the failure surface is not necessarily ellipsoidal as no constraint on T
exists, and the failure essentially admits a surface of the von Mises–Huber-type along the isotropic directions.

Remark 3. It is important to note that in the crack driving forces (69) and (76) the principal axes of anisotropy for
the material, say {ê1, ê2, ê3}, are aligned with the reference basis system, say {e1, e2, e2}, with the properties

êi · ê j = δi j and ei · e j = δi j , (R3.1)

where δi j denotes the Kronecker delta. In order to apply the mentioned crack driving forces, which are based on the
fourth-order strength tensor T, the effective stress tensor σ 0, obtained according to the reference basis system, needs
to be transformed to the material axis, i.e.

σ̂ 0 = Qσ 0QT. (R3.2)

Therein Q is an orthogonal tensor with the form

Q = Qi j ei ⊗ e j , Qi j = ei · ê j , (R3.3)

which transforms the basis system (of analysis) onto the material axis according to

êi = Qei . (R3.4)

3.4. Principal stress criterion

Developed on the basis of the Rankine theory of failure, the criterion of Raina and Miehe [46] reports on the
spectral decomposition of the effective Cauchy stress tensor σ 0. The authors merely consider the positive principal
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stresses. Thus,

σ+0 =

3∑
i=1

⟨σ0i ⟩ni ⊗ ni , (81)

where σ0i denotes the effective principal stresses, and ni are the corresponding eigenvectors for i ∈ {1, 2, 3}.
Accordingly, the dimensionless crack driving force H in (57) is rewritten as

H = σ+0 : T : σ
+

0 , (82)

for which the fourth-order strength tensor T reads in the index notation

(T)i jkl =
1

4σ 2
crit

(Aik A jl + Ail A jk), (83)

where σcrit denotes the reference critical stress associated with uniaxial loading in a certain axis that can be
conceptually replaced by an ultimate stress. The second-order anisotropy tensor (A)i j in (83), expressed in index
notation for i, j, k, l ∈ {1, 2, 3}, deals with the mechanical response of orthotropic, transversely isotropic and isotropic
materials. Details concerning how to construct the tensor A can be found in Raina and Miehe [46]. For a simplified
case, when the principal axes coincide with the axes of reference, the crack driving force in (82) turns into

H =
3∑

i=1

(
⟨σ0i ⟩

σcrit/ai

)2

. (84)

It needs to be emphasized that ai are scaling factors to impose a certain class of material, e.g., transversely isotropic
material, which also enters in (A)i j .

4. Decoupled weak formulation

This section is devoted to a Galerkin-type weak formulation of the strong forms presented in Section 2. In particular,
a staggered solution procedure is implemented, where the coupled Euler–Lagrange equations are successively solved
on the basis of a one-pass operator-splitting algorithm on the temporal side, whereas a Galerkin-type weak formulation
on the spatial side furnishes the rate-dependent formulation of the phase-field. Such a solution algorithm sequentially
updates the crack phase-field and the deformation map in a typical time step by means of a Newton–Raphson scheme.

4.1. One-pass operator-splitting algorithm

We first perform a decoupling of the mechanical and crack phase-field sub-problems by the virtue of a one-pass
operator-splitting algorithm composed of two sub-algorithms, i.e.

ALGOCM = ALGOC ◦ ALGOM, (85)

for a typical time increment τ = tn+1− tn , where tn+1 and tn stand for the current and previous time steps, respectively.
For the sake of keeping the notation compact, all field variables without subscript are hereinafter evaluated at time tn+1.
The operator-splitting algorithm basically converts the non-convex coupled problem into two convex and symmetric
sub-problems which are computationally more feasible than the monolithic scheme. The algorithm of each sub-
problem reads

(M) :
{

Jdiv(J−1τ )+ ρ0γ̃ = 0,
ḋ = 0,

(C) :
{
ϕ̇ = 0,
d −∇d ·L∇d − 2(1− d)H+ ηḋ = 0.

(86)

The algorithm (M) is the mechanical predictor step which is solved for the frozen crack phase-field parameter d = dn ,
while the algorithm (C) is the crack evolution step for the frozen deformation map ϕ = ϕn .

4.2. Time-discrete weak formulation

We construct the weak forms of the balance of linear momentum (53)1 and the rate-dependent evolution equation
of the crack phase-field (60). For the quasi-static problem under consideration, we introduce two test function fields
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δϕ and δd, regarded as the virtual deformation and the crack phase-field, respectively. Thereby, δϕ and δd satisfy
the homogeneous form of the Dirichlet boundary conditions on their corresponding reference surfaces ∂Bϕ and ∂Bd
according to

δϕ ∈Wδϕ = {δϕ | δϕ = 0 on ∂Bϕ}, δd ∈Wδd = {δd | δd = 0 on ∂Bd}. (87)

A conventional Galerkin procedure leads to the weighted residual expressions of the field variables for the mechanical
problem, i.e.

Gϕ
= Gϕ

int(δϕ,ϕ, d)− Gϕ
ext(δϕ) = 0, (88)

and the phase-field problem

Gd
= Gd

int(δd,ϕ, d)− Gd
ext(δd) = 0. (89)

The term Gϕ
ext in (88) represents the external weighted-residual due to the action of γ̃ and t̃, whereas the term for the

phase-field in (89) vanishes (Gd
ext = 0), see Gültekin et al. [10]. The explicit expressions for Gϕ

int and Gd
int with respect

to (86) read

Gϕ

int =

∫
B

g∇x (δϕ) : τdV,

Gd
int =

∫
B

{
δd

[
d − 2(1− d)H+ η

d − dn

τ

]
+∇(δd) ·L∇d

}
dV .

(90)

A reliable and efficient solution of the above-mentioned equations entails a consistent linearization with respect to all
quantities, i.e. ϕ and d, associated with the nonlinear problem about ϕ = ϕ̃ and d = d̃. Thus,

LinGϕ
|ϕ̃ = Gϕ(δϕ, ϕ̃, d)+∆Gϕ(δϕ, ϕ̃, d;∆ϕ) = 0,

LinGd
⏐⏐
d̃ = Gd (δd,ϕ, d̃)+∆Gd (δd,ϕ, d̃;∆d) = 0.

(91)

The expressions in (91) are given by the Taylor’s expansion through the Gâteaux derivative yielding the linear
incremental terms ∆Gϕ and ∆Gd , which are decomposed in the following way

∆Gϕ
= ∆Gϕ

int −∆Gϕ
ext, ∆Gd

= ∆Gd
int −∆Gd

ext. (92)

While the external terms vanish (Gültekin et al. [10]), the explicit forms of the internal terms are given as

∆Gϕ

int =

∫
B

g∇x (δϕ) : C : g∇x (∆ϕ)dV +
∫
B
∇x (δϕ) : ∇x (∆ϕ)τdV

∆Gd
int =

∫
B
δd

(
1+ 2H+

η

τ

)
∆ddV +

∫
B
∇(δd) ·L∇(∆d)dV,

(93)

where the Eulerian elasticity tensor C takes on the form C = g(d)(C0
iso
+ C0

ani). The spatial discretization of the
time-discrete decoupled weak forms in (90) and their corresponding linearizations documented in (93), provide their
algebraic counterparts, namely the discrete residual vectors and the stiffness matrices. For an elaborate treatment of
discretization methods and a staggered solution procedure based on a one-pass operator-splitting algorithm we refer
to, e.g., Miehe et al. [33] and Gültekin et al. [10]. A general outlook of the staggered solution scheme is provided in
Table 1.

5. Representative numerical examples

We start by demonstrating the effect of the anisotropic crack phase-field model on the propagation of the crack,
in particular a sensitivity analysis is provided. Subsequently, the anisotropic failure criteria imparted in Section 3
are scrutinized from a numerical point of view, i.e. the failure surface and the crack propagation associated with the
distinct failure criteria are compared with each other on the basis of simple numerical examples.

5.1. Sensitivity analysis of the anisotropic phase-field model

In order to show the purely geometric effect that the anisotropy tensor L grants to the phase-field formulation, a
2-D square benchmark problem, as described in Fig. 6(a) and (b), is considered. This problem, unlike the majority of
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Table 1
Algorithm for the multi-field problem in [tn, tn+1].

1. Initialization – At time tn given: deformation map, phase-field, history field ϕn , dn , Hn

2. Update – Update the prescribed loads γ̃ , ϕ and t̃ at current time tn+1
3. Compute ϕn+1 – Determine ϕn+1 from the minimization problem of elasticity
ALGOM • Gϕ

=
∫
B[g∇x (δϕ) : τ ]dV −

∫
B δϕ · ρ0γ̃ dV −

∫
∂B δϕ · t̃da = 0

4. Compute history – Check crack initiation/propagation condition, update history

• H(tn+1)←
{
H(tn ) if H(tn+1) <H(tn )
H(tn+1) else

5. Compute dn+1 – Determine dn+1 from the minimization problem of crack topology

ALGOC • Gd
=

∫
B δd

[
d − 2(1− d)H+ η d−dn

τ

]
dV +

∫
B ∇(δd) ·L∇ddV = 0

(a) (c) (e)

(b) (d) (f)

Fig. 6. (a) 2-D square domain with one family of fibers oriented with an angle of α = 30◦ with respect to the x-axis; (b) geometry of the domain
and boundary condition delineating a disc, where d = 1. Evolution of the phase-field parameter d for a varying anisotropy parameter ωM: (c) 0; (d)
1; (e) 5, (f) 10. Dimensions are provided in millimeters.

the examples in the crack phase-field literature, is performed in the absence of the mechanical field. The benchmark
displays an anisotropic propensity via a single family of fibers M, oriented by an angle of α = 30◦ with respect to the
x-axis. The (unstructured) finite element mesh consists of 10 362 four-noded quadrilateral elements. The phase-field
parameter d is assigned a unit value within a disc with 1 mm in diameter at the center of the domain thereby creating a
difference between the surfaces energies (gcΓl(d)) of the disc and the rest of the domain. The computations performed
for the evolution of the crack phase-field (ALGOC) in a typical Newton iteration yield the diffusion of the phase-field for
different values of the anisotropy parameter ωM = {0, 1, 5, 10}, see Fig. 6(c)–(f), respectively. In fact, the evolution of
the phase-field parameter d starts to diverge from being isotropic (Fig. 6(c)), and becomes oriented along the direction
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(a) (b) (c) (d)

Fig. 7. (a) Unit cube of a transversely isotropic tissue consisting of one family of fibers with the orientation M parallel to the x-direction, initially
subjected to uniaxial deformations in the x-, y- and z-directions followed by a series of planar biaxial deformations (b) in the xy-plane; (c) in the
xz-plane; (d) in the yz-plane.

Table 2
Elastic material parameters and crack phase-field parameters for a transversely isotropic material, as studied in Section 5.2.

Elastic µ = 10 kPa
k1 = 20 kPa
k2 = 1

Crack phase-field Energy-based criterion giso
c = 5 kPa mm gani

c = 15 kPa mm
Tsai–Wu criterion σ u

x = 140 kPa σ u
y = σ

u
z = 20 kPa

Principal stress criterion σcrit = 140 kPa a1 = 1, a2 = a3 = 7
Hill criterion σ u

x = 30 kPa σ u
y = σ

u
z = 20 kPa

of the fibers as the anisotropy parameter ωM increases (Fig. 6(d)–(f)). This palpably suggests that the proposed model
can handle transitions from isotropic to weak and strong anisotropy.

5.2. Numerical investigation of the failure surfaces

This investigation deals with a homogeneous problem of a unit cube discretized by one hexahedral element
(Fig. 7(a)) that resolves the analytical solution for the deformation and the stress fields as all non-local effects due
to the gradient of the crack phase-field ∇d are discarded. The effect of the length-scale parameter vanishes since l
approaches to unity. As a loading protocol, we first consider separate uniaxial extension tests along the x-, y- and
z-directions with a stretch ratio λx = λy = λz ≡ 2 which is followed by a series of planar biaxial deformations in
the xy-plane with stretch ratios λx : λy = 2 : 1.1, 2 : 1.25, 2 : 1.5, 2 : 1.75, 2 : 2, 1.75 : 2, 1.5 : 2, 1.25 : 2,
1.1 : 2. Stretch ratios in the xz- and yz-planes λx : λz and λy : λz are applied in an analogous manner as for λx : λy ,
see Fig. 7(b)–(d). The tissue is regarded as transversely isotropic consisting of one family of fibers with orientation
M along the x-direction, and it is embedded in the ground matrix. The elastic material parameters and the crack
phase-field parameters are listed for each failure criterion in Table 2.

Fig. 8(a)–(c) illustrates the resulting failure surfaces at the instance when d ̸= 0 for the energy-based criterion, the
Tsai–Wu criterion and the principal stress criterion, respectively. The results of simulations conspicuously manifest
the transverse isotropy of the three failure criteria as the failure surfaces are elliptical in shape (only one eight of an
ellipsoid is shown due to the tensile characteristic of the deformation). The onset of crack occurs when the normal
stress σxx ≈ 140 kPa, whilst the value of the other normal stresses σyy and σzz are around 20 kPa. It needs to be
emphasized that one can envisage a zone between the macroscopic onset (d ̸= 0) and the completion (d = 1) of the
crack in the context of diffusive crack modeling such as the crack phase-field. This example points out the associated
macroscopic onset of the crack.

Fig. 8(d) demonstrates the failure surfaces obtained at d ̸= 0 for the Hill criterion. We note that the Hill criterion
becomes in line with the von Mises–Huber criterion for the isotropic situation, namely the yz-plane. With the specified
deformations the criterion cannot be satisfied when σ u

x = 140 kPa and σ u
y = σ u

z = 20 kPa. In fact, the failure
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(a) (b)

(c) (d)

Fig. 8. Failure surfaces in regard to Cauchy stresses σxx , σyy and σzz in kPa at which the failure conditions are satisfied, leading to d > 0 for (a)
the energy-based; (b) the Tsai–Wu; (c) the maximum principal stress and (d) the Hill criterion.

envelope on the isotropic yz-plane becomes open-ended. Therefore, a different set of phase-field parameters are used,
as listed in Table 2 in order to retrieve a closed-ended failure surface. The distinct shape of the failure envelope
on the yz-plane eventually becomes discernable, see Fig. 8(d), which retrieves the von Mises–Huber criterion, as
expected.

5.3. Uniaxial extension test investigated with different failure criteria

This benchmark represents a notched strip of a hypothetical arterial tissue with two families of fibers oriented in
the directions M and M′ and symmetrically arranged with respect to the x-axis by an angle α. The fibers correspond
to the collagenous component of the tissue. The geometric setup and the loading condition are indicated in Fig. 9(a).
The finite element mesh consists of 35 163 four-node tetrahedral elements connected by 7 553 nodes, and it comprises
a refined zone beyond the notch where the crack is expected to propagate, see Fig. 9(b). As stated by Miehe et al. [33],
in order to resolve the crack zone properly, the length-scale parameter l needs to be chosen at least twice as large as the
minimum mesh size realized in the refined region. Accordingly, the length-scale parameter is selected as l = 0.06 mm,
and the viscosity η is set to zero. The weak anisotropy as corroborated by experimental results (see, e.g., Fig. 1 in [10])
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(a) (b)

Fig. 9. (a) Geometry of the strip with two families of fibers oriented in the directions M and M′ and symmetrically arranged with respect to the
x-axis by an angle α. The strip is uniaxially loaded by means of a displacement u; (b) finite element mesh of the corresponding geometry with
refinement beyond the notch. Dimensions are provided in millimeters.

Table 3
Elastic material parameters and crack phase-field parameters for a strip extended uniaxially, as studied in Section 5.3.

Elastic κ = 104 kPa
µ = 16.95 kPa
k1 = 243.57 kPa
k2 = 2.57
α = 44.5◦

Crack phase-field Energy-based criterion giso
c = 1 kPa mm gani

c = 1.5 kPa mm
Tsai–Wu criterion σ u

x = σ
u
y = 1000 kPa σ u

z = 333 kPa
Principal stress criterion σcrit = 1000 kPa a1 = a2 = 1, a3 = 3
Hill criterion σ u

x = σ
u
y = 1000 kPa σ u

z = 333 kPa

Table 4
Number of steps times step sizes considered to simulate the uniaxial extension test for four different failure criteria.

Energy-based criterion 40× 10−2 10× 10−3 55× 10−6

Tsai–Wu criterion 36× 10−2 10× 10−5 129× 10−8

Principal stress criterion 43× 10−2 10× 10−3 10× 10−6 172× 10−10

Hill criterion 40× 10−2 5× 10−5 157× 10−8

is accommodated by the anisotropy parameters ωM = ωM′ = 1.0. The displacements are constrained in the planes
x = 0, y = 0, and z = 0 along the x-, y-, and z-directions, respectively. The used elastic material parameters and the
crack phase-field parameters are summarized in Table 3.

The crack growth with respect to each failure criterion is analyzed for a monotonic load pattern driven by the
displacement u throughout the numerical simulation, whereby the performance of the failure criteria is assessed in
terms of their ability to mimic the crack propagation resulting in a complete rupture of the strip. Table 4 summarizes
the number of simulation steps times step sizes considered for each criterion.

Fig. 10 depicts the evolution of the crack phase-field d with respect to the four failure criteria at instants t1, t2, t3
and t4. The crack in the first and last case, namely the energy-based and the Hill criterion (Fig. 10(a) and (d)), grows
by following a nearly straight pattern in the refined zone upon its initiation at the tip of the notch. However, both
the Tsai–Wu and the principal stress criteria (Fig. 10(b) and (c)) show a spurious crack branching, not observed
experimentally, see, e.g., Fig. 1 in [10]. The damaged zone also spreads out of the refined region. In this respect,
the Hill criterion provides a more physically admissible picture than the other stress-based criteria albeit the crack
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(a)

(b)

(c)

(d)

Fig. 10. Evolution of the crack phase-field d in a notched strip of a hypothetical tissue uniaxially elongated: (a) energy-based criterion; (b) Tsai–Wu
criterion; (c) principal stress criterion; (d) Hill criterion. The particular instants t1, t2, t3 and t4 manifest snapshots, compare with Fig. 11.

front still remains spurious compared with that of the energy-based one. In fact, the energy-based criterion predicts a
smoother crack-front than all stress-based criteria.

Fig. 11 illustrates curves that correspond to force F vs displacement u and to crack driving force H vs time t ,
where the particular instants t1, t2, t3 and t4 are indicated for each failure criterion. As can be seen, a typical nonlinear
response is followed by a sudden decrease in the load-bearing capacity, while a dramatic increase in the value of the
crack driving force becomes evident upon the onset of macro-cracks at the tip of the notched region. Note that the
force–displacement curves are obtained at the plane x = 12 mm, whereas the crack driving force–time curves are
depicted for a node just beyond the tip of the notch. The isotropic and anisotropic contributions due to Hiso

and Hani

are discernable for the energy-based failure criterion. What is also intriguing is that there exists at least two orders of
magnitude difference between the energy-based and the stress-based criteria in terms of the values of the crack driving
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(a)

(b)

(c)

(d)

Fig. 11. Plots corresponding to force F vs displacement u and to crack driving force H vs time t , with regard to (a) energy-based criterion; (b)
Tsai–Wu criterion; (c) principal stress criterion; (d) Hill criterion. The particular instants t1, t2, t3 and t4 manifest the snapshots in the previous
figure (Fig. 10), and are also indicated here on curves. Zoom-in views for the H-t curves are also shown.
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(a) (b)

Fig. 12. (a) Geometry of the strip with a single family of fibers with orientation M in the y-direction, corresponding to the collagenous component
of the material. The strip is torn apart by means of a displacement ux applied at the two arms in the positive and negative x-direction; (b) finite
element mesh of the corresponding geometry. Dimensions are provided in millimeters.

Table 5
Crack phase-field parameters for a transversely isotropic strip peeled off as studied in Section 5.4.

Crack phase-field Energy-based criterion giso
c = 4.17 kPa mm gani

c = 12.5 kPa mm
Tsai–Wu criterion σ u

y = 2500 kPa σ u
x = σ

u
z = 500 kPa

Principal stress criterion σcrit = 2500 kPa a2 = 1, a1 = a3 = 5
Hill criterion σ u

y = 2500 kPa σ u
x = σ

u
z = 500 kPa

forces. That entails the use of smaller step sizes for all stress-based criteria after the fully initiated crack (indicated in
Table 4) to avoid an unstable crack growth which may eventually lead to the loss of global convergence, and a sudden
crush of the simulation.

5.4. Peel test investigated with different failure criteria

Peel tests bear an immense resemblance to the physical phenomena of, e.g., aortic dissections and allow a
computational analysis of the dissection propagation in terms of various failure criteria mentioned in Section 3. The
benchmark involves an initial tear at the middle, and idealizes an arterial wall with a morphology rendered by a
single family of fibers M oriented in the y-direction, see Fig. 12(a). We imitate the tailored geometry provided by
Gasser and Holzapfel [25] and discretize the strip with 2 640 eight-node hexahedral elements connected by 5 536
nodes, see Fig. 12(b). Appropriate Dirichlet and Neumann-type boundary conditions are considered in order to avoid
rigid body motions. A horizontal displacement ux = 4 mm is incrementally applied at the arms on the top plane
in the x-direction, while all nodes on the plane at y = 0 are fixed in all directions, see Fig. 12(a). In addition, the
displacements in the z-direction are prevented to reflect the plain strain condition.

As to the elastic material parameters, we adopt µ = 16.2 kPa, k1 = 98.1 kPa and k2 = 10 according to Gasser and
Holzapfel [25]. The penalty parameter and the length-scale parameter are chosen as κ = 1 000 kPa and l = 0.05 mm,
respectively. The viscosity parameter is adjusted to be η = 1 kPa s for the energy-based criterion and η = 10 kPa s for
the stress-based criteria, while the anisotropy parameters are selected as ωM = 1.0 and ωM′ = 0. The other phase-field
parameters are taken from Table 5.

Fig. 13 depicts the spatial distribution and the evolution of the crack phase-field for the energy-based, Tsai–Wu,
principal stress and the Hill criterion, as the two arms of the strip separated by an initial tear are being pulled in
opposite directions. The problems associated with all stress-based criteria in the previous example, see Section 5.3,
seem to resume and they can only be circumvented via the use of smaller step sizes, see Table 6. Besides, the phase-
field also evolves at locations where two arms bend which is also demonstrated by Ferrara and Pandolfi [20] as regions
of higher stress concentrations compared with the dissecting zone at the middle. This undesired behavior is not present
in the case of the energy-based criterion.

In Fig. 14 the force per unit width is plotted against the displacement applied (the separation of one arm) in
regard to the energy-based, Tsai–Wu, principal stress and the Hill criterion. A weakly nonlinear response is observed
until the ultimate load bearing capacity is reached, which is realized by a kind of plateau region. The load bearing
capacity significantly diminishes afterwards for all failure criteria. It needs to be highlighted that the computation
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(a)

(b)

(c)

(d)

Fig. 13. Evolution of the crack phase-field d for (a) the energy-based; (b) the Tsai–Wu; (c) the principal stress criterion; (d) the Hill criterion, as
the arterial tissue with an initial tear is being pulled in two opposite directions.

Table 6
Number of steps times step sizes considered to simulate the peel test with
four different failure criteria.

Energy-based criterion 1000× 10−3

Tsai–Wu criterion 490× 10−3 5100× 10−4

Principal stress criterion 490× 10−3 5100× 10−4

Hill criterion 180× 10−3 8200× 10−4

suffers due to incomplete convergence discernable from the jags in the loading path for the stress-based criteria, see
Fig. 14(b)–(d).

6. Discussion

The most likely cause of numerical instability related with stress-based criteria may be that these criteria are
essentially driven by the effective complementary energy Ψ0com through the fourth-order strength tensor which is the
analogue of the elastic compliance tensor. However, energy-based criteria are governed by the effective strain energy
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(a) (b)

(c) (d)

Fig. 14. Plots of force per unit width for one arm against the applied displacement for (a) the energy-based; (b) the Tsai–Wu; (c) the principal
stress criterion; (d) the Hill criterion.

Ψ0str per se. As a result, the changes ∆Ψ0com and ∆Ψ0str are not equivalent in a typical time increment ∆t = tn+1 − tn
provided that the mechanical response of the material is nonlinear – typically the stress in a tissue grow faster at finite
strains. Note that the two terms are interchangeable for the case of linear elasticity or in the context of small strains.
In conclusion, the typical exponential nature of the stress–stretch relationship in soft biological tissues renders stress-
based criteria non-functional. Fig. 15 illustrates a qualitative sketch elucidating how the equivalence between ∆Ψ0com

and ∆Ψ0str changes in the favor of ∆Ψ0com as the response of the material becomes highly nonlinear which utterly
leads to an unstable crack growth. This phenomenon presents itself conspicuously in magnitudes of the dimensionless
crack driving forces in Fig. 11 of Section 5.3.

The multi-field variational formulation leads to Euler–Lagrange equations governing the crack phase-field
evolution and the static equilibrium in the absence of inertial effects. Hence, the derived formulation inherently
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(a) (b)

Fig. 15. Qualitative sketch showing the relationship between the effective stress σ0 and stretch λ, and the incremental change from σ0n –λn to
σ0n+1 –λn+1 at a typical time step ∆t = tn+1 − tn : (a) linear; (b) nonlinear material behavior with the corresponding changes in the effective
complementary energy ∆Ψ0com and the effective strain energy ∆Ψ0str .

leads to the crack path which minimizes the energy and maximizes the dissipation through the crack propagation
process. However, the stress-based failure criteria merely describe the elastic domain of a brittle anisotropic material
corresponding to the onset of the macro-cracks. The magnitudes of stress-based criteria beyond the failure surface
do not necessarily lead to maximum dissipation or a minimum energy state since they can only be incorporated into
the crack phase-field evolution equation on a rather ad hoc basis by taking the advantage of the crack driving force
being dimensionless. As a matter of fact, the variational formulation does not hold for stress-based criteria producing
a cracked zone in certain directions which may not correspond to a maximum dissipation or a minimum energy state
of the effective material. Therefore, as evidently noticed in Sections 5.3 and 5.4, stress-based criteria are not able
to portray physically relevant post-cracking states. However, in biomechanical applications, e.g., rupture of thoracic
aortas, where not only the crack initiation but also the crack propagation is of fundamental concern, an energy criterion
prevails.

The plots in Fig. 14 showing the force per unit width against the applied displacement seem to fall short of
reproducing an asymptotic jagged plateau unlike those of Gasser and Holzapfel [25] and Ferrara and Pandolfi [20].
Nevertheless, the sensitivity analyses of [20] in the sense of mesh size and strength values suggest similar post-
cracking states as in Fig. 14 when the analysis is performed by using a relatively coarse mesh along with high strength
values. However, our study primarily spotlights the comparison of numerical performances obtained for various failure
criteria. At this stage we do not look for model parameters that are fitted to experimental data.

7. Conclusion

In the present study we have compared a number of anisotropic failure criteria, essentially based on the free energy
or the stress, with respect to their ability to capture admissible anisotropic failure surfaces and crack propagations
for simple boundary-value problems. On the theoretical side, the crack phase-field model, established according to a
continuous variational setup due to a power balance, provided the backbone of our modeling endeavors. In the sequel,
this framework was extended to the local rate-dependency of the phase-field evolution. The resulting Euler–Lagrange
equations were recast by simple algebraic manipulations, and then solved by a one-pass operator-splitting algorithm
on the temporal side which was ensued by a Galerkin-type weak formulation on the spatial side. On the constitutive
part, a short summary of the energy-based criterion was given from our previous contribution. Subsequently, we
introduced stress-based criteria (Tsai–Wu and Hill) together with the principal stress criterion.
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On the numerical side, we focused on the anisotropic evolution of the crack phase-field. This was followed by the
comparison of failure surfaces associated with the aforementioned criteria dealing with a homogeneous problem.
The second investigation was performed on a notched strip of a hypothetical arterial tissue undergoing uniaxial
extension, whereby the corresponding crack growth for each failure criterion was demonstrated. Finally, peel tests
of a hypothetical arterial strip subjected to the aforementioned failure criteria were performed, and the respective
dissections were systematically examined. The results of the simulations in Section 5.2 suggest that the energy-based
criterion and the stress-based criteria, namely the Tsai–Wu and the principal stress criterion, can reflect the onset of
the crack where the expected failure surfaces attributed to the transverse isotropy were acquired; however, the tests
on the propagation of the crack in Sections 5.3 and 5.4 evidently favor the energetic-based criterion to accomplish
a stable crack growth for the analyzed three-dimensional boundary-value problems blended with anisotropy at finite
strains.
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