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Chapter 2
Hyperelasticity of Soft Tissues and Related
Inverse Problems

Stéphane Avril

Abstract In this chapter, we are interested in the constitutive equations used to
modelmacroscopically themechanical function of soft tissues. After reviewing some
basics about nonlinear finite strain constitutive relations, we present recent devel-
opments of experimental biomechanics and inverse methods aimed at quantifying
constitutive parameters of soft tissues. A focus is given to in vitro characterization
of hyperelastic parameters based on full-field data that can be collected with digital
image correlation systems during the experimental tests. The specific use of these
data for membrane-like tissues is first illustrated through the example of bulge infla-
tion tests carried out onto pieces of aortic aneurysms. Then an inverse method, based
on the principle of virtual power, is introduced to estimate regional variations of
material parameters for more general applications.

2.1 Introduction

A better understanding of many issues of human health, disease, injury, and their
treatment thereof necessitates a detailed quantification of how biological cells, tis-
sues, and organs respond to applied loads. Thus, experimental and computational
mechanics can, and must, play a fundamental role in cell biology, physiology, patho-
physiology, and clinical intervention. The goal of this chapter is to discuss some of
the recent developments of experimental biomechanics based on the use of digital
image correlation and inverse methods for quantifying the finite strain behavior of
biological soft tissues in terms of nonlinear constitutive relations. After a brief review
of these constitutive relations, two recent developments of the author’s experience are
presented to illustrate the potential of digital image correlation and inverse methods
in experimental biomechanics of soft tissues.
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38 S. Avril

2.2 Basic Constitutive Equations of Soft Tissues

This section presents the theoretical background for understanding the foundations
of constitutive models in soft tissues. This background is essential for the following
sections and for the other chapters of this book. The presentation of this background
follows the approach of a seminal paper from Millard [1].

2.2.1 Kinematics of Finite Deformation

Since the early 1940s there has been enormous progress in the development of a
theory of elastic materials subjected to large deformations. Significant theoretical
results, many confirmed by experiments, have projected considerable light on the
physical behavior of rubberlike materials such as synthetic elastomers, polymers
and biological tissue, in addition to natural rubber. The mathematical theory of elas-
ticity of materials subjected to large deformations is inherently nonlinear. The theory
of elasticity of materials for which there exists an elastic potential energy function is
known as hyperelasticity. Before presenting the constitutive equations for a hyper-
elastic solid, we begin with a sketch of the principal kinematical relations used to
describe the finite deformation of a continuum and with the Cauchy stress principle
and equations of kinetics. A body B = {Pk} is a set of material points Pk called par-
ticles. A reference frame is a set ϒ = {O, e} consisting of an origin point O and an
orthonormal vector basis e. The motion of a particle P relative to ϒ is described by
the time locus of its position vector x(P, t) relative to ϒ . This locus is the trajectory
or path of P in ϒ . A typical particle P may be identified by its position vector X(P)

in ϒ at some reference time t0. The domain κ0 of X, the region in Euclidian space
occupied by B at time t0 is called a reference configuration of B. Then, relative to ϒ

the motion of a particle P from κ0 is described by the vector function

x = χ(X, t) (2.1)

The domain κ of x, the region in Euclidian space occupied by B at time t0 is called
a current configuration of B. Hence, x denotes the place at time t in the current
configurationκwhich is occupied by the particlePwhose placewasX in the reference
configuration of B. The velocity and acceleration of a particle P relative to ϒ are
defined by

v(X, t) = ẋ(X, t) (2.2)

γ(X, t) = v̇(X, t) = ẍ(X, t) (2.3)

avril@emse.fr



2 Hyperelasticity of Soft Tissues and Related Inverse Problems 39

We shall assumehenceforward that the body is a contiguous collection of particles,
we call this body a continuum. It is assumed that χ is a smooth one-to-one map of
every material point of κ0 → κ with

J = det F > 0, (2.4)

in which
F = ∂x/∂X = Grad x (2.5)

is called the deformation gradient. This tensor transforms the tangent element dX of
a material line L0 in κ0 into the tangent element dx of its deformed image line L in
κ. Hence,

dx = FdX (2.6)

Let ‖dx‖ = dl and ‖dX‖ = dL, where l and L are the arc length parameters for L
and L0 respectively. Then Eq.2.6 may be written:

λe = FE (2.7)

in which e = dx/dl and E = dX/dL are unit vectors tangent to L and L0 at x and X
and

λ = dl/dL (2.8)

is named the stretch, the ratio of the current length ds to the reference length dS of the
material element. These lengths are commonly called the deformed and undeformed
lengths, respectively. However it is not essential that the reference configuration be an
undistorted reference configuration, nor one that the body actually needs to occupy at
any time during its motion. It is seen that Eq.2.7 expresses the physical result that F
rotatesE into the direction e and stretches it by an amount 0 < λ < ∞. This is essen-
tially the substance of the more general and physically useful polar decomposition
theorem of linear algebra applied pointwise to the nonsingular tensor F

F = RU = VR (2.9)

The proper orthogonal tensor R characterizes the local rigid body rotation of a mate-
rial element. The positive symmetric tensors U and V describe the local deformation
of the element. They are called the right and the left stretch tensors, respectively. The
decomposition of the deformation gradient F into a pure stretch U at X followed by
a rigid body rotation R, or by the same rigid body rotation followed by a pure stretch
V at x is unique. Because U and V usually are tedious to compute, it is customary to
use their squares

C = FTF = U2 and B = FFT = V2 (2.10)

The corresponding positive symmetric tensors are respectively known as the right
and the left Cauchy–Green deformation tensors. It follows that U and V (C and B)
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40 S. Avril

have the same principal values λk (λ2
k) and respective principal directions μ and ν

are related by the rotation R
ν = R.μ (2.11)

The λk are the stretches of the three principal material lines, they are called the
principal stretches.

Formulae relating the respective material surface area and volume elements da
and dv in κ to their respective reference images dA and dV in κ0 may be easily
derived by application of

nda = J F−T .NdA and dv = JdV (2.12)

where n is the exterior unit normal vector to ∂P in κ and N is the exterior unit
normal vector to ∂P in κR.

The previous relation shows that det F is the ratio of the current (deformed) volume
to the reference (undeformed) volume of a material element. Therefore the deforma-
tion is isochoric if J = 1. It is evident on physical grounds that 0 < det F < ∞. The
material time rate of the deformation of a continuum is described by the velocity
gradient tensor L

L = Grad ẋ = ḞF−1 (2.13)

The symmetric part D and antisymmetric part W of L are the stretching and spin
tensors, respectively.

2.2.2 The Cauchy Stress Principle and the Equations
of Motion

The forces that act on any part P ⊂ B of a continuum B are of two kinds: a
distribution of contact force tn per unit area of the boundary ∂P of P in κ, and a
distribution of body force b per unit volume of P in κ. The total force F (P, t)
and the total torque T (P, t) acting on the part P are related to the momentum
and the moment of momentum of the material points ofB in an inertial frame � in
accordance with Euler’s laws of motion

F (P, t) =
∫

∂P
tn da +

∫
P

b dv = d

dt

∫
P

v dm (2.14)

T (P, t) =
∫

∂P
x × tn da +

∫
P

x × b dv = d

dt

∫
P

x × v dm (2.15)

The moments in Eq.2.15 are to be computed with respect to the origin in �. Note
that dm = ρ dv is the material element of mass with density ρ per unit volume in κ.
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2 Hyperelasticity of Soft Tissues and Related Inverse Problems 41

The principle of balance of mass requires also that dm = ρR dV where ρR is the
density of mass per unit volume V in κR. Therefore one finds that the respective mass
densities are related by the local equation of continuity

ρR = Jρ (2.16)

Application of the first law of Euler to an arbitrary tetrahedral element leads to
Cauchy’s stress principle

tn = σ.n (2.17)

Hence the traction or stress vector tn is a linear transformation of the unit normal n
by the Cauchy stress tensorσ. Use of previous equations and the divergence theorem
yields Cauchy first law of motion

divσ + b = ργ (2.18)

The second law of Eq.2.15 together with Eqs. 2.17 and 2.18 yields the equivalent
local moment balance condition restricting the Cauchy stress σ to the space of
symmetric tensors

σ = σT (2.19)

The Cauchy stress characterizes the contact force distribution tn in κ per unit
current area in κ. But this is often inconvenient in solid mechanics because the
deformed configuration generally is not known a priori. Therefore, the engineering
stress tensor TR, also known as the first Piola-Kirchhoff stress tensor, is introduced
to define the contact force distribution tn ≡ TR.N in κ per unit reference area in κR.
Then for the same contact force dF (P, t), we must have

dF (P, t) ≡ tn da = σ.n da = TR.N dA = tN dA (2.20)

The vector tN is named the engineering stress tensor. We thus obtain the rule

TR = J σF−T (2.21)

relating the engineering and Cauchy stress tensors.
The corresponding stress principle and balance laws become

tN = TR.N (2.22)

DivTR + bR = ρR γR (2.23)

TRFT = FTT
R (2.24)
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42 S. Avril

Hence the engineering stress TR generally is not symmetric. Equation bR ≡ Jb
identifies the body force per unit volume in κR, and Div denotes the divergence
operator with respect to X in κR, whereas div is with respect to x in κ.

Another stress tensor that will be useful is the second Piola-Kirchhoff stress
defined as

π = F−1TR = J F−1σF−T (2.25)

Thus far, the deformation of a continuum and the actions that produces it have
been treated separately without the mention of any special material characteristics
that the body may possess. Of course the inherent constitutive nature of the material
dictates its deformation response to action by forces and torques. For a specific
class of materials, the specific relationship between the deformation gradient F,
the rate of deformation Ḟ, and the stress σ, TR or π is described by an equation
known as a constitutive equation. In the next section, the principle of balance of
mechanical energy will be applied to derive the constitutive equation for a special
class of perfectly elastic materials called hyperelastic solids.

2.2.3 Hyperelasticity

Thermodynamics foundation The first law of thermodynamics tells that the time
rate of change of the internal energy E(P, t) for any part P ⊂ B of a body B is
balanced by the total mechanical power W (P, t) and the total heat flux Q(P, t).

Ė(P, t) = W (P, t) + Q(P, t) (2.26)

The second law of thermodynamics tells that the time rate of change of entropy
Ṡ(P, t) for any part P ⊂ B of a body B can be decomposed into exchanges of
entropy and production of entropy and that the latter can only be positive, or zero if the
transformation is reversible (no dissipation). If� denotes temperature, exchanges of
entropy at constant temperature (isotherm transformations will be assumed further)
may be written such as: Q/�. Finally, the second law of thermodynamics tells

Ṡ(P, t) ≥ Q(P, t)

�
(2.27)

Ė(P, t) − �Ṡ(P, t) ≤ W (P, t) (2.28)

P being an arbitrary tetrahedral element, and σ : D being the mechanical power
per unit volume, it may be written at any time t

ρ(ė − �ṡ) ≤ σ : D (2.29)
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2 Hyperelasticity of Soft Tissues and Related Inverse Problems 43

where e denotes the local specific internal energy and s denotes the local specific
entropy. This equation points out that the work done by the stress would induce either
an increase of the specific internal energy or a decrease of the specific entropy. In
the case of elasticity, the transformation is reversible and it may be written

ρ(ė − �ṡ) = σ : D (2.30)

When the work done by the stress induces mostly an increase of the specific
internal energy (|�ṡ| << ė), we speak of enthalpic elasticity (in an isotherm trans-
formation, ė = ḣ where h would be the specific enthalpy). Enthalpic elasticity is
the elasticity of crystals where the deformation comes mostly from a change of dis-
tances between atoms. Elastic response of the crystalline solids is due to the change
of the equilibrium interatomic distances under stress and therefore, the change in the
internal energy of the crystal.

When the work done by the stress induces mostly a decrease of entropy (ė <<

|�ṡ|), we speak of entropic elasticity. Elasticity of soft biological tissues is composed
from the elastic responses of the chains crosslinked in the network sample. External
stress changes the equilibrium end-to-end distance of a chain, and it thus adopts a
less probable conformation, its entropy therefore decreases. Therefore, the elasticity
of soft biological tissues is of purely entropic nature.

Introducing the specific free energy φ = e + �s, and still assuming isotherm
transformations (�̇ = 0), it may be written

ρφ̇ = σ : D (2.31)

It is now the time to define what a hyperelastic solid is. A hyperelastic solid is a
material whose specific free energy depends only on the strain. It may be written

φ(X, t) = φ(F(X, t), X) (2.32)

The ψ = ρφ function is a strain energy density function. Then the constitutive
equation for a hyperelastic solid can be written

π = ∂ψ

∂E
= 2

∂ψ

∂C
(2.33)

TR = ∂ψ

∂F
= F

∂ψ

∂E
= 2F

∂ψ

∂C
(2.34)

σ = J−1 ∂ψ

∂F
FT = J−1F

∂ψ

∂E
FT = 2J−1F

∂ψ

∂C
FT (2.35)
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44 S. Avril

Isotropic compressible hyperelastic solids For an isotropic solid, the strain energy
function must be an isotropic scalar valued function of the principal invariants alone

ψ = ψ(C) = ψ(B) = ψ(I1, I2, I3) (2.36)

wherein, specifically,
I1 = tr(B) (2.37)

I2 = 1

2

[
I21 − tr(B2)

]
(2.38)

I3 = det(B) (2.39)

Note that Eq.2.35 may be rewritten such as

σ = 2J−1 ∂ψ

∂B
B (2.40)

Then, introducing the principal invariants

σ =
(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
1 + 2J−1 ∂ψ

∂I1
B − 2J−1 ∂ψ

∂I−1
B−1 (2.41)

where I−1 = I2/I3 = tr(B−1).

Isotropic hyperelastic incompressible solids The Cauchy stress on an incompress-
ible, hyperelastic material, is determined by F only to within an arbitrary stress
which is proportional to the identity tensor. Then the constitutive equation for an
incompressible, isotropic, hyperelastic material is given by

σ = −p1 + 2
∂ψ

∂I1
B − 2

∂ψ

∂I2
B−1 (2.42)

where p is an undetermined scalar of x. Note that I2 = I−1 for an incompressible
solid.

A particular type of strain energy functions may be written such as polynomials

ψ =
Nj∑
j=0

Ni∑
i=0

Cij(I1 − 3)i(I2 − 3)j (2.43)

whenNi = 3 andNj = 0 it is referred to as Yeoh strain energy function, whenNi = 1
andNj = 1 butC11 = 0, we have theMooney–Rivlinmaterial. The special casewhen
Ni = 1 and Nj = 0 is the neo-Hookean material.

avril@emse.fr



2 Hyperelasticity of Soft Tissues and Related Inverse Problems 45

Another particular type which is meaningful for biological tissues may be written

ψ = μ0

2γ

[
eγ(I1−3) − 1

]
(2.44)

Isotropic hyperelastic nearly incompressible solids It is common for nearly incom-
pressible hyperelastic solids to assume a perfect decoupling between purely volu-
metric and purely isochoric effects, and then to decompose the strain energy density
function additively in two components: one depending only on volume changes and
the second one independent of volume changes

ψ = U(J) + ψ̄(Ī1, Ī2) (2.45)

σ =
(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
1

+ 2J−1 1

J2/3
∂ψ̄

∂ Ī1
B − 2J−1 1

J4/3/J2
∂ψ̄

∂ Ī2
B−1 (2.46)

where Ī1 = tr(B̄), Ī2 = 1
2

[
Ī21 − tr(B̄2)

] = tr(B̄−1), B̄ = F̄F̄T and F̄ = J−1/3F.

σ =
[(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
+ ∂ψ̄

∂ Ī1

∂ Ī1
∂J

+ ∂ψ̄

∂ Ī2

∂ Ī2
∂J

]
1

+ 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1 (2.47)

σ =
[(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
− 2

3
J−1 ∂ψ̄

∂ Ī1
Ī1 − 4

3
J−1 ∂ψ̄

∂ Ī2
Ī2

]
1

+ 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1 (2.48)

σ =
[(

∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
− 2J−1 ∂ψ̄

∂ Ī2
Ī2 − 2

3
J−1 ∂ψ̄

∂ Ī1
Ī1 + 2

3
J−1 ∂ψ̄

∂ Ī2
Ī2

]
1

+ 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1 (2.49)
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Finally,

σ =
[

∂ψ

∂J
− 2

3
J−1 ∂ψ̄

∂ Ī1
Ī1 + 2

3
J−1 ∂ψ̄

∂ Ī2
Ī2

]
1 + 2J−1 ∂ψ̄

∂ Ī1
B̄ − 2J−1 ∂ψ̄

∂ Ī2
B̄−1

= ∂ψ

∂J
1 + 2J−1Dev

(
∂ψ̄

∂ Ī1
B̄ − ∂ψ̄

∂ Ī2
B̄−1

)

(2.50)

where Dev denotes the deviatoric tensor.
The Cauchy stress is then decomposed additively into a hydrostatic component

related to J and into a deviatoric component related to Ī1 and Ī2.

σ = −p1 + s (2.51)

where p = −∂U/∂J and

s = 2J−1Dev

(
∂ψ̄

∂ Ī1
B̄ − ∂ψ̄

∂ Ī2
B̄−1

)
(2.52)

Common models of isotropic hyperelastic nearly incompressible solidsThe com-
pressible version of a neo-Hookean material may be written

ψ = C10(Ī1 − 3) + 1

D
(J − 1)2 (2.53)

The compressible version of a Yeoh material may be written

ψ =
3∑

i=0

Ci0(Ī1 − 3)i +
3∑

i=0

1

Di
(J − 1)2i (2.54)

Another common model in compressible hyperelasticity is the Arruda Boyce
model. Although its formulation is based on a thermodynamical background, it is
not often used for biological tissues. The strain energy density may be written

ψ = μ

5∑
i=0

Ci

λ2i−2
m

(Ī i1 − 3i) + 1

D

[
(J2 − 1)

2
− ln(J)

]
(2.55)

where: C1 = 1
2 , C2 = 1

20 , C3 = 11
1050 , C4 = 19

7050 , C5 = 51
673750 .
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2 Hyperelasticity of Soft Tissues and Related Inverse Problems 47

A more common model is the Ogden model, which may be written

ψ = 2μ

α2
(λ2α

1 + λ2α
2 + λ2α

3 ) + 1

D
(J2 − 1) (2.56)

where λ1, λ2 and λ3 are the principal stretches.

2.2.4 More Sophisticated Constitutive Models

The aim of this section is to introduce the basics for the following sections of this
chapter but also for the following chapters of this book. It is not rare that soft tissues
are modeled with constitutive equations including other features than the ones of
isotropic hyperelasticity. The main ones are summarized hereafter.

Anisotropic hyperelastic models Soft tissues may often present anisotropic effects.
The most common effect is a different stress–stretch curve when they are subjected
to uniaxial tension in two different directions. Very common models permitting to
represent these effects may describe the material such as a composite made of a
neo-Hookean matrix in which fiber families are embedded

ψ = C10(Ī1 − 3) +
N∑
i=1

k1i
2k2i

[
ek2i(λ̄

2
i −1) − 1

]
+ 1

D
(J2 − 1) (2.57)

where λ̄2
i = C̄ :(Mi⊗Mi) = C̄Mi.Mi.

Mi are vectors defining orientations of a fiber family in the reference configura-
tion. Although motivated by microstructural information, this type of models was
developed primarily to capture phenomenologically the anisotropic response of soft
tissues subjected to multidirectional tensile tests, which ultimately depends on con-
stituent fractions, fiber orientations, cross-linking, physical entanglements, and so
forth.

Irreversible effects When subjected to cycled uniaxial tensile tests (or other types
of testing), the loading unloading profile of biological tissues often presents an hys-
teresis on the first cycle. With repeated loading cycles the load-deformation curves
shift to the right in a load-elongation diagram and the hysteretic effects diminish. In
a load-time diagram the load-time curves shift upwards with increasing repetition
number. By repeated cycling, eventually a steady state is reached at which no further
change will occur unless the cycling routine is changed. In this state the tissue is
said to be preconditioned. Any change of the lower or upper limits of the cycling
process requires new preconditioning of the tissue. Preconditioning occurs due to
internal changes in the structure of the tissue. Hysteresis, nonlinearity, relaxation and
preconditioning are common properties of all soft tissues, although their observed
degrees vary.
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The difference between the loading and unloading response can be simulated
using an isotropic damage formulation. It consists in writing the strain energy in the
form of

ψ = (1 − d)ψ̄ + 1

D
(J2 − 1) (2.58)

where 1 − d is a reduction factor and d is a scalar damage variable defined in
0 ≤ d ≤ 1. When d = 0 the material is undamaged. The value d = 1 is an upper
limit in which the material is completely damaged and failure occurs. The evolution
of damage may be described by a function of a maximum equivalent strain defined

such as ζm = maxt∈[−∞,t]
√
2ψ̄(E(t) where E(t) is the Green–Lagrange strain tensor

for the pseudotime t of the deformation process. The evolution of damage can be
described with an exponential form

1 − d(ζm) = β + (1 − β)
1 − e−ζm/α

ζm/α
(2.59)

where α and β are material parameters.
Damage can also be modeled with the concept of softening hyperelasticity. In this

concept, instead of having a strain energy tending to infinity when the norm of the
stretch tensor tends to infinity, the stored energy is bounded [2].

More details about damage models are given in Chap.4 of this book.

Time dependent effects The hysteresis in the stress–strain relationship may also
show the viscoelastic behavior of soft biological tissue. The simplest model of vis-
coelasticity is the Kelvin model combining a linear spring and a dashpot. In analogy
to linear viscoelasticity in small strain, we can assume an additive free energy poten-
tial with the form ψ = ψ0 + ψv where ψ0 measures the energy stored in the elastic
branch (equilibrium) andψv measured the energy stored in the viscous branch, which
progressively disappears during relaxation.

In a viscoelastic material the history of strain affects the actually observed stress.
As well, loading and unloading occur on different stress–strain paths. The hysteresis
of most biological tissues is assumed to show only little dependence on the strain
rate within several decades of strain rate variation. This insensitivity to strain rate
over several decades is not compatible with simple viscoelastic models consisting for
instance of a single spring and dashpot element. With such a simple viscoelasticity
approach the material model will show a maximum hysteresis loop at a certain strain
rate whereas all other strain rates will show a smaller hysteresis loop. A model
consisting of a discrete number of spring-dashpot elements therefore produces a
discrete hysteresis spectrum with maximum dissipation at discrete strain rates. It
may be written as

ψ̄ =
∫ t

0

[(
1 −

N∑
k=1

gk(1 − e− t−τ
τk )

)
× dψ0

dτ

]
dτ (2.60)

where τk are the relaxation times and gk are the relaxation coefficients.
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It is widely accepted that soft connective tissues are multiphasic materials. They
are sometimes modeled as a mixture of two immiscible constituents: an solid hypere-
lastic matrix and an interstitial incompressible fluid. This type of models, sometimes
called poroelastic models, can particularly describe both the stress distribution and
interstitial fluid motion within the cartilage tissue under various loading conditions.
Moreover the interaction between the solid and the fluid phases has been identified to
be responsible for the apparent viscoelastic properties in the compression of hydrated
soft tissues.

Active models It is often assumed that in the presence of an actin-myosin complex
in the soft tissue, the total Cauchy stress can be split into two parts: σ = σp + σa,
where σp and σa denote passive and active stress respectively. The passive stress
results from the elastic deformation of the tissue and can be derived from the theory of
hyperelasticity. The active stress is generated in myofibrils or in smooth muscle cells
by activation and is directed parallel to the fiber orientation. Hence: σa = σaε ⊗ ε
where ε is the unit vector identifying the orientation. The mechanism for generating
σa involves internal variables.

2.2.5 Growth and Remodelling Models

Many experiments have shown that the stress field dictates, at least in part, the way
in which the microstructure of soft tissues is organized. This observation leads to the
concept of functional adaptation wherein it is thought that soft tissues functionally
adapt so as to maintain particular mechanical metrics (e.g., stress) near target values.
To accomplish this, tissues often develop regionally varying stiffness, strength, and
anisotropy.

Models of growth and remodelling necessarily involve equations of reaction dif-
fusion. There has been a trend to embed the reaction diffusion framework within
tissue mechanics [3, 4]. The primary assumption is that one models volumetric
growth through a growth tensor Fg , which describes changes between two fictitious
stress-free configurations: the original body is imagined to be fictitiously cut into
small stress-free pieces, each of which is allowed to grow separately via Fg, with
det(Fg) �= 1. Because these growths need not be compatible, internal forces are often
needed to assemble the grown pieces, via Fa, into a continuous configuration. This,
in general, produces residual stresses, which are now known to exist in many soft
tissues. The formulation is completed by considering elastic deformations, via Fa,
from the intact but residually stressed traction-free configuration to a current con-
figuration that is induced by external mechanical loads. The initial boundary value
problem is solved by introducing a constitutive relation for the stress response to the
deformation FeFa, which is often assumed to be incompressible hyperelastic, plus
a relation for the evolution of the stress-free configuration via Fg . Thus, growth is
assumed to occur in stress-free configurations and typically not to affect material
properties.

avril@emse.fr



50 S. Avril

Although the previous theory called the theory of kinematic growth yields many
reasonable predictions, Humphrey and coworkers have suggested that it models
consequences of growth and remodelling, not the processes by which they occur.
Growth and remodelling necessarily occur in stressed, not fictitious stress-free, con-
figurations, and they occur via the production, removal, and organization of different
constituents; moreover, growth and remodelling need not restore stresses exactly
to homeostatic values. Hence, Humphrey and coworkers introduced a conceptually
different approach to model growth and remodelling, one that is based on tracking
the turnover of individual constituents in stressed configurations (the constrained
mixture model [5, 6]).

2.3 Characterization of Hyperelastic Properties Using
a Bulge Inflation Test

After the introduction of basics about nonlinear finite–strain constitutive relations,
we now introduce approaches of experimental biomechanics and inverse methods
aimed at quantifying constitutive parameters of soft tissues.

2.3.1 Introduction

Traditional characterization of material constants in hyperelastic solids The
hyperelastic constants in the strain energy density function of a material determine
its mechanical response. For identifying these hyperelastic materials, simple defor-
mation tests (consisting of six deformation models—see Fig. 2.1) can be used. It is
always recommended to take the data from several modes of deformation over a wide
range of strain values.

Even though the superposition of tensile or compressive hydrostatic stresses on
a loaded incompressible body results in different stresses, it does not alter deforma-
tion of a material. Upon the addition of hydrostatic stresses, the following modes of
deformation are found to be identical: uniaxial tension and equibiaxial compression,
uniaxial compression and equiaxial tension, and planar tension and planar compres-
sion. It reduces to three independent deformation states for which we can obtain
experimental data.

For each of the three independent tests, the resultant force F can be expressed
analytically with respect to the applied stretch λ using the following formulas of
incompresssible hyperelasticity which are derived from the equations introduced
above:

1. in uniaxial tension:

F = 2S0(λ − λ−3)

(
∂ψ

∂I1
+ ∂ψ

∂I2

)
(2.61)
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Fig. 2.1 Schematic representation of independent testing modes for hyperelastic materials

2. in planar tension:

F = 2S0(λ − λ−3)

(
λ

∂ψ

∂I1
+ ∂ψ

∂I2

)
(2.62)

3. in equibiaxial tension:

F = 2S0(λ − λ−5)

(
∂ψ

∂I1
+ λ2 ∂ψ

∂I2

)
(2.63)

where S0 is the initial cross-sectional area of the sample.
The identification of thematerial constants is achieved by a least-squares fit analy-

siswhich consists inminimizing the sumof squared discrepancies between the exper-
imental values (if any) of F and the values predicted by the models. This yields a set
of simultaneous equations which are solved for the material constants.
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The identification of material constants is seldom achieved on cylindrical speci-
mens where analytical formulas can also be derived to perform again least-squares
fit analysis [7].

The bulge inflation test combined with digital image correlation As introduced
previously, traditional characterization of material constants in hyperelastic solids is
based on a least-squares fit analysis of F versus λ curves. In the tests, λ is usually
measured using traditional extensometry techniques being either based on tracking
the motion of the grips in the machine used to apply the deformation on the tissue,
sometimes based on tracking the motion of markers or dots drawn on the tissue itself.

Recently, it has become a common practice to combine video based full-field
displacement measurements experienced by tissue samples in vitro, with custom
inverse methods to infer (using nonlinear regression) the best-fit material parameters
and the rupture stresses and strains. These approaches offer important possibilities for
fundamental mechanobiology research as they permit to quantify regional variations
in properties in situ.

Here we present an illustrative example of the author’s experience where bulge
inflation tests are carried out on aneurysm samples for characterizing the regional
variations of hyperelastic constants across them.

2.3.2 Materials and Methods

Experimental arrangements The study deals with the characterization of aortic
tissues collected on patients having an ascending thoracic aortic aneurysm (ATAA).
In this reported example, an unruptured ATAA section was collected from a patient
undergoing elective surgery to replace his ATAA with a graft in accordance with
a protocol approved by the Institutional Review Board of the University Hospital
Center of Saint–Etienne. After retrieval, the specimen was placed in saline solution
and stored at 4 ◦C until testing, which occurred within 48 h of the surgery. Immedi-
ately prior to testing, the ATAA was cut into a square specimen approximately 45 ×
45mm. Any fatty deposits were removed from the surface of the tissue to ensure that
during mechanical testing the tissue did not slip in the clamps. An average thickness
was found for the sample by measuring the thickness of the tissue at a minimum of
five locations.

The specimen was clamped in the bulge inflation device, Fig. 2.2, so that the
luminal side of the tissue faced outward. Then a speckle pattern was applied to the
luminal surface using black spray paint. The samplewas inflated using a piston driven
at 15mm/min to infuse water into the cavity behind the sample. During the test, the
pressure was measured using a digital manometer (WIKA, DG-10). Images of the
inflating specimen were collected using a commercial DIC system (GOM, 5M LT)
composed of two 8-bit CCD cameras equipped with 50mm lenses (resolution: 1624
× 1236 px). The cameras were positioned 50cm apart at an angle of 30 ◦ with an
aperture of f /11. This produced a depth of field of 15.4mm which was sufficient to
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Fig. 2.2 Experimental setup and test sample a before testing and b after rupture

capture the deformation of the tissue up to failure. Images of the deforming sample
were collected every 3 kPa until the sample ruptured.

After rupture, the collected images were analyzed using the commercial corre-
lation software ARAMIS (GOM, v. 6.2.0) to determine the three-dimensional dis-
placement of the tissue surface. For the image analysis, a facet size of 21 px and a
facet step of 5 px were chosen based on the speckle pattern dot size, distribution,
and contrast. The selected parameters produced a cloud of approximately 15,000
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points where the three displacement values were calculated. Details about the error
quantification of the method may be found in the original paper [8].

Geometric reconstruction A deforming NURBS mesh was extracted by morphing
a NURBS template to the DIC point clouds. The template was a circular domain with
a diameter slightly less than that of the point cloud in the first pressure state. The
NURBS surface was parameterized as a single patch containing clamped knots of 20
divisions in each parametric direction, with 22 × 22 control points. Since NURBS
control points, in general, do not fall on the surface they describe, they cannot be
directly derived from the DIC clouds. Instead, the positions of the Gauss points were
obtained first using the moving least square method [9]. For each Gauss point, a set
of nearest image points in the DIC point cloud were identified based on their distance
to the Gauss point in the first pressure state. The radius of the neighboring region
was automatically adjusted to that it contained at least six image points. The position
of each Gauss point, yg , was computed using an affine interpolation

yg =
∑

y∈�g
wjyj∑

y∈�g
wj

(2.64)

where yj is the position vector for each image point in the neighborhood, �g, and wi

is the weighting function taken to be the inverse of the distance from yj to the Gauss
point. Using the same weights calculated in the first stage, the Gauss points in every
pressure stage were identified.

A global least squares problem was then formulated to compute the best-fit posi-
tions of the control points. The NURBS surface was represented as

x =
∑
i

Ni(u1, u2)Qi (2.65)

where Ni are the NURBS basis functions, Qi are the control points, and the pair of
knot variables, (u1, u2), represent a material point. The position of a modeled Gauss
point is then given by xg = ∑

i Ni(u1g, u2g)Qi. The position of the control points
were obtained by minimizing a weighted sum of ‖xg − yg‖2 over all Gauss points.
This procedure was applied to each pressure state.

The accuracy of this reconstruction method was previously assessed and showed
by [10].

Strain reconstruction Surface strains were computed in the local NURBS curvi-
linear coordinate system. The surface coordinates, uα, (α,β = 1, 2) induce a set
of convected basis vectors (a1, a2) where aα = ∂x

∂uα
and x(u1, u2) is the NURBS

representation given in Eq.2.65. The reciprocal basis
(
a1, a2

)
are computed such

that aα · aβ = δαβ . In the reference configuration, the basis vectors are denoted by
(A1, A2) and

(
A1, A2

)
.
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The surface deformation gradient tensor is

F = aα ⊗ Aα . (2.66)

It then follows that the surface Cauchy–Green deformation tensor, C, and the Green–
Lagrangian strain tensor, E, are given by

C = (
aα · aβ

)
Aα ⊗ Aβ (2.67)

E = 1

2

(
aα · aβ − δαβ

)
Aα ⊗ Aβ . (2.68)

The physical components ofC andE are computed by identifying a local orthonormal
basis (G1, G2) that is constructed in the tangent plane spanned by (A1, A2). The
physical components of the Cauchy–Green deformation tensor, Cαβ , and Green–
Lagrangian strain tensor, Eαβ , are Cαβ = G · C G and Eαβ = G · E G, respectively.

Wall stress reconstruction For an inverse membrane boundary value problem the
deformed configurations and boundary conditions are given as inputs to the FEmodel
and the wall stress is calculated. The balance equation that governs static equilibrium
is [11, 12]

1√
a

(√
atαβaα

)
,β

+ pn = 0 (2.69)

where a is det
(
aα aβ

)
, t is the Cauchy wall tension, p is the applied internal pressure,

n is an outward facing unit normal, and ( ),β indicates
∂

∂ uβ . Note that the Cauchy wall
tension t is directly related to the Cauchy stress, σ, through the current thickness of
the membrane, h, via tαβ = hσαβ = tβα.

The weak form of the boundary value problem reads

∫
�

tαβaα.δx,β da −
∫

�

pn.δx da = 0, (2.70)

where δx is any admissible variation to the current configuration�. The details of the
FE procedure for solving Eq.2.70 were presented in [13]. Briefly, the Cauchy wall
tension is regarded as a function of the inverse deformation gradient. The weak form
subsequently yields a set of nonlinear algebraic equations for the positions of control
points in the reference configuration. At the same time, the tension field in the current
state is determined. An auxiliary material model is needed to perform the inverse
analysis. The material model influences the predicted undeformed configuration;
however, due to the static determinacy of Eq.2.69, the influence is weak [13–16]. As
in a previous study [17], a neo-Hookean model was implemented. For computational
efficiency, the stiffness parameter of the model was set to unrealistically high values
to ensure a robust convergence.

To simulate the experimental boundary conditions the outermost edge of the spec-
imen was fixed. This boundary condition was applied directly to the control points
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on the outer boundary of the mesh. Applying any displacement-based constraint in
the inverse membrane analysis creates a boundary region in the solution where the
stresses are inaccurate [13]. To minimize the influence of boundary effect, the outer
ring of elements was excluded from further analyses. Since the influence region of
each control point spans three elements in each of the two parametric directions, the
outer three rings of elements were deemed to be the boundary region. By a retrospec-
tive comparison with the forward analysis reported the size of the boundary region
was confirmed [18].

Material property identification Using inverse membrane analysis, the stress was
calculated at every Gauss point. Combining the stress data with the local surface
strains calculated from Eqs. 2.66–2.68, the stress–strain response at every Gauss
point in the mesh is known. The local material properties at each Gauss point were
then identified by fitting the local stress–strain response to a hyperelastic surface
energy density. An anisotropic strain energy function was used, this anisotropy being
implemented on the principle of Eq.2.57. More specifically here, we used a modified
form of the strain energy density proposed by Gasser, Ogden, and Holzapfel (GOH)
[19] which may be written such as

w = μ1

2
(I1 − ln (I2) − 2) + μ2

4γ

(
eγ(Ik−1)2 − 1

)
(2.71)

where I1 = tr C and I2 = det C are the principal invariants of the Cauchy–Green
deformation tensor and Iκ = C :(κ1 + (1 − 2κ) M⊗M) is a compound invariant
consisting of isotropic and anisotropic contributions.

Litteraly, Eq. 2.71 models a composite material made a matrix reinforced with
fibers. In the compound invariantIκ, the unit vectorM = cos θ G1 + sin θ G2 defines
the orientation along which the tissue is stiffest while κ characterizes the degree of
anisotropy, varying from 0 to 1. When κ = 0 it would model a composite with all the
fibers perfectly aligned in the direction M and at κ = 1 the fibers would be perfectly
aligned in the perpendicular direction, M⊥. Finally, κ = 1

2 models the case where
fibers would have no preferential direction (isotropic). The parameters μ1 and μ2

are the effective stiffnesses of the matrix and fiber phases, respectively, both having
dimensions of force per unit length. The parameter γ is a nondimensional parameter
that governs the tissue’s strain stiffening response.

The second Piola–Kirchhoff wall tension, S, is written as

S = 2
∂w

∂I1
1 + 2

∂w

∂I2
I2C−1 + 2

∂w

∂Iκ
(κ1 + (1 − 2κ) M ⊗ M) . (2.72)

Substituting Eq.2.71 into Eq.2.72 one finds

S = μ1
(
1 − C−1

) + μ2 e
γ(Iκ−1)2 (Iκ − 1) (κ1 + (1 − 2κ) M ⊗ M) (2.73)

noting that the second Piola-Kirchoff wall tension is related to the Cauchy wall
tension via t = 1√

I2
F S FT.
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The values of the model parameters μ1, μ2, γ, κ, and θ were determined by
minimizing the sum of the squared difference between the stress computed from
the inverse membrane analysis and those computed using Eq.2.73. The nonlinear
minimizationwas solved inMatlab (MathWorks, v. 7.14)where themodel parameters
were constrained such that: μ1, μ2, γ > 0, 0 ≤ θ ≤ π

2 , and 0 ≤ κ ≤ 1. Due to the
boundary effect in the stress analysis the perimeter ring of elements were excluded
from the material parameter identification.

2.3.3 Results

Geometric reconstructionAbulge inflation test to failurewas performed on aATAA
collected from a male patient who was 55years old. The diameter of the aneurysm as
determined by pre-surgical CT scan was 55mm. The mean thickness of the sample
was 2.35mm. The pressure and DIC data during the bulge inflation tests were used
to generate a deforming NURBS mesh and identify the local stress–strain response
during the bulge inflation test. Using the pointwise stress–strain data, the spatial
distribution of the mechanical properties was identified.

Using the experimental DIC point cloud a deformingNURBSmeshwas generated
of the ATAA sample.

Local stress and strain response Fig. 2.3 shows the distributions of themagnitude of
the Cauchy wall tension, t, and Green–Lagrangian strain, E, at an applied pressure
of 117 kPa for a given ATAA sample. The distribution of wall tension and strain
remained similar throughout the inflation of the specimen. In general, at each Gauss
point both the normal strains and the planar shear strains were nonzero. To facilitate
plotting of the local stress–strain response, the axes of principal strain were identified
and the local stresses and strains were rotated into the principal strain axes. In [8], the
three components of the wall tension in the principal strain axes, t̃11, t̃12, and t̃22 were
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(a) Wall Tension (b) Green-Lagrange strain

Fig. 2.3 Contours of the magnitude of the a wall tension (N/m) and b Green–Lagrange strain at a
pressure of 117 kPa. Adapted from [8]
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plotted against the principal stretches λ1 and λ2. As expected, the local stress–strain
response showed the nonlinear stiffening behavior that is common in arteries. The
shear stresses, t̃12, were much smaller than the normal stresses, t̃11 and t̃22. In a small
regionwhere rupture eventually occurred, the ATAA appeared to yield. The locations
of this localized yielding correspond to strain concentrations in zones where rupture
initiates (Fig. 2.3b).

Material property identification The proposed model for the elastic behavior of
the ATAA was able to fit the bulge inflation data well (0.81 < R2 < 0.99). Lower
values of the correlation coefficient were located in the small zone where rupture
eventually occurred. Excluding this region the minimum value of R2 was 0.96. The
experimental data (points) and model fits (lines) for three Gauss points were shown
in [8].

The distributions of the material parameters are plotted in Fig. 2.4. Clearly the
material parameters display a heterogeneous distribution.Theparameterμ1 displayed
the sharpest changes in value while the parameters μ2, κ, and γ changed more
gradually. Not surprisingly, the values of μ2 are an order of magnitude larger than
μ1 reflecting the difference in stiffness between the collagen fibers and matrix. The
values of κ are approximately 0.5 in the center suggesting an isotropic organization
of the collagen fibers. Towards the edges of the specimen the collagen fibers become
more aligned signaling that the sample is regionally anisotropic. In Fig. 2.4e, the angle
θ that defines the stiffest direction is plotted. Note that θ is defined locally relative
to the horizontal meshlines. Keep in mind that when the value of κ is approximately
0.5, there is no stiffest direction.
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Fig. 2.4 a μ1 (N/mm). b μ2 (N/mm). c γ. d κ. e θ (rad). Distribution of the identified material
parameters over the ATAA. Adapted from [8]
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This pointwise method was used to identify the distribution of material properties
of 10 human ATAA samples [18]. Our method was able to capture the varying levels
of heterogeneity in the ATAA from regional to local. The distributions of the mate-
rial properties for each patient were examined to study the inter- and intra-patient
variability. Future studies on the heterogeneous properties of the ATAA would ben-
efit from some form of local structural analysis such as histology or multi-photon
microscopy. The structural data and knowledge of the spatial trends should provide
the information necessary to move from merely measuring the local material prop-
erties to uncovering the links that exist between the underlying microstructure and
local properties.

2.4 Characterization of Hyperelastic Material Properties
Using a Tension-Inflation Test and the Virtual Fields
Method

In the previous section, it was shown that in some cases which are referred to as
isostatic, it may be possible to derive the stress distribution independently of the
material properties of the tissues.When strain distributions are also available, stress–
strain curves can be derived locally and the inverse problem turns into a semi-forward
problem [20], where the material parameters can be identified directly by fitting the
curves with a model.

In case of hyperstatic situations, it is not possible to derive the stress distribution
independently of the material properties of the tissues. A possible solution for the
identification of local material properties may still be found using the Virtual Fields
Method (VFM). The VFM is one of the techniques developed to identify the para-
meters governing constitutive equations, the experimental data processed for this
purpose being displacement or strain fields. It will be shown in this chapter that one
of its main advantages is the fact that, in several cases, the sought parameters can be
directly found from the measurements, without resorting to a FE software.

The VFM relies on the Principle of Virtual Power (PVP) which is written with
particular virtual fields.

2.4.1 General Principle

The PVP represents in fact the weak form the local equations of equilibrium which
are classically introduced in mechanics of deformable media. Assuming a quasi-
static transformation (the absence of acceleration forces) and assuming the absence
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of body forces, the PVP can be written as follows for any domain defined by its
volume ω(t) in the current configuration and by its external boundary ∂ω(t):

−
∫

ω(t)
σ : (Grad v∗)dω

︸ ︷︷ ︸
P∗
int

+
∫

∂ω(t)
tn.v∗ds

︸ ︷︷ ︸
P∗
ext

= 0 (2.74)

where σ is the Cauchy stress tensor, v∗ is a virtual velocity field defined across
the volume of the solid, Grad v∗ is the gradient of v∗, tn are the tractions across the
boundary (surface denoted ∂ω(t)), P∗

int is the virtual power of internal forces and P
∗
ext

is the virtual power of external forces.
A very important property is in fact that the equation above is satisfied for any

kinematically admissible (KA) virtual field v�. By definition, a KA virtual field
must satisfy the boundary conditions of the actual velocity field in order to cancel
the contribution of the resulting forces on the portion of the boundary along which
actual displacement are prescribed. It must be pointed out that this requirement is
not really necessary in all cases, but this point is not discussed here for the sake of
simplicity. KA virtual fields are also assumed to be C0 functions [21].

2.4.2 Example of Application of the Principle of Virtual
Power for Membranes

The PVPmay be a powerful tool to derive global or semi-local equilibrium equations
which eventually appear useful for the identification of material parameters. Here
we illustrate this for deriving a useful equation for a hyperelastic membrane. This is
purely for the sake of giving an example, but an infinity of other equations could be
derived.

Let us consider a membrane-like structure made of a hyperelastic prestressed tis-
sue. Themembrane is defined by a three-dimensional surface, namely defined by a set
of points M(ξ1, ξ2), where (ξ1, ξ2) are the surface parametric coordinates associated
with the local basis (g1, g2). Vector g1 points the direction of the maximum principal
curvature and vector g2 points the direction of the minimum principal curvature. The
thickness of themembrane is named h(ξ1, ξ2) andwe denoteκ1(ξ1, ξ2) andκ2(ξ1, ξ2)
respectively the maximum and minimum principal curvatures at (ξ1, ξ2).

There is no particular assumption related to the thickness of the membrane but
it is assumed that through-thickness shear is negligible. A third coordinate ξ3 is
introduced along the direction normal to the surface (through-thickness coordinate),
with ξ3 = 0 at the inner surface and ξ3 = 1 at the outer surface.
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Let us consider a quadrilateral patch across the membrane surface. This patch is
denoted n and we will apply the PVP on its volume. For that, the following virtual
field u∗ is defined across the given patch n:

u∗(ξ3) = (1/κ1
n − h)(1/κ2

n − h)(1/κ1
n + 1/κ2

n − 2h)

(1/κ1
n − (1 − ξ)h)(1/κ2

n − (1 − ξ)h)
nn (2.75)

where 1/κ1
n is the average radius of curvature on the outer surface along the

direction of the maximum principal curvature and 1/κ2
n is the average radius of

curvature on the outer surface along the direction of theminimumprincipal curvature.
The radii of curvature at any position ξ3 between the inner (ξ3 = 0) and outer (ξ3 = 1)
surfaces are then (1/κ1

n − (1 − ξ3)h) and (1/κ2
n − (1 − ξ3)h). Vector nn points the

direction normal to the surface.
The gradient of u∗ may be written as follows:

Grad u∗(ξ3) =
[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1 − ξ3)h)2(1/κ2

n − (1 − ξ3)h)

]
g1n ⊗ g1

n

+
[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1 − ξ3)h)(1/κ2

n − (1 − ξ3)h)2

]
g2
n ⊗ g2

n

−
[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1 − ξ3)h)2(1/κ2

n − (1 − ξ3)h)

+ (1/κ1
n − h)(1/κ2

n − h)(1/κ1
n + 1/κ2

n − 2h)

(1/κ1
n − (1 − ξ3)h)(1/κ2

n − (1 − ξ3)h)2

]
nn ⊗ nn (2.76)

Plugging in and evaluating the integral expression for P∗
int (cf. Eq. 2.74)

P∗
int(t) = −h(t)(1/κ1

n(t) − h(t))(1/κ2
n(t) − h(t))(1/κ1

n(t) + 1/κ2
n(t) − 2h(t))∫ 1

0

[
σw
11,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)2(1/κ2

n − (1 − ξ3)h)

+ σw
22,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)(1/κ2

n − (1 − ξ3)h)2

]
An(t, ξ3)dξ3 (2.77)

where An(t, ξ3) is the area of patch n at radial position ξ3 and may be written

An(t, ξ3) = (1/κ1
n(t) − (1 − ξ3)h(t))(1/κ

2
n(t) − (1 − ξ3)h(t))�

1
n(t)�

2
n(t) (2.78)

where �1
n and �2

n are two angles defining the angular sector of patch n along the
directions of the maximum and minimum principal curvatures, respectively. Intro-
ducing the expression of An(t, ξ3) into Eq.2.77, we obtain
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P∗
int(t) = −h(t)(1/κ1

n(t) − h(t))(1/κ2
n(t) − h(t))(1/κ1

n(t) + 1/κ2
n(t) − 2h(t))

�1
n(t)�

2
n(t)

∫ 1

0

[
σw
11,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)

+ σw
22,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ2
n − (1 − ξ3)h)

]
dξ3

(2.79)

Regarding the virtual work on the boundaries, shear stresses are null so only the
virtual work of the internal pressure needs to be considered

P∗
ext(t) = P(t)(1/κ1

n(t) − h(t))(1/κ2
n(t) − h(t))�1

n(t)�
2
n(t)

(1/κ1
n(t) + 1/κ2

n(t) − 2h(t)) (2.80)

so combining all the equations we have

P(t) = h(t)
∫ 1

0

[
σw
11,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ1
n − (1 − ξ3)h)

+ σw
22,n(t, ξ3) − σw

33,n(t, ξ3)

(1/κ2
n − (1 − ξ3)h)

]
dξ3

(2.81)

Finally the obtained equation is a generalized expression of the traditional Laplace
law commonly used in biomechanics of soft tissues [22].

2.4.3 Identification of Hyperelastic Parameters
Using the VFM

The principle of virtual power (PVP) has been used for the identification of material
properties since 1990 through the virtual fields method (VFM), which is an inverse
method based on the use of full-field deformation data [21, 23, 24]. The VFM
was recently applied to the identification of uniform material properties in arterial
walls [23].

The first step of the VFM consists in introducing the constitutive equations. In
the case of hyperelasticity, Eq. 2.74 becomes

−
∫

ω(t)

(
J−1F

∂ψ

∂E
FT

)
: (Grad v∗)dω +

∫
∂ω(t)

tn.v∗ds = 0 (2.82)

This equation being satisfied for any KA virtual field, any new KA virtual field
provides a new equation. The VFM relies on this property by writing Eq.2.82 above
with a set of KA virtual fields chosen a priori [25]. The number of virtual fields and
their type depend on the nature of the strain energy function. Two different cases can
be distinguished.
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• Case #1: the strain energy density function depends linearly on the sought para-
meters. Writing Eq.2.82 with as many virtual fields as unknowns leads to a system
of linear equations which provides the sought parameters after inversion.

• Case #2: the strain energy density function involve nonlinear relationswith respect
to the constitutive parameters. In this case, identification must be performed by
minimizing a cost function derived from Eq.2.82.

Let us illustrate this with the strain energy function of Eq.2.71. It provides a
membrane constitutive equation, i.e. it yields the tension and not the Cauchy stress
so the integrals will be written across a given surface ν(t) figuring a portion of the
membrane

− μ1

∫
ν(t)

1√
I2

(
B −

√
I21

)
: (Grad v∗)dν

− μ2κ

∫
ν(t)

1√
I2

eγ(Iκ−1)2 (Iκ − 1) B : (Grad v∗)dν

− μ2(1 − 2κ)

∫
ν(t)

1√
I2

eγ(Iκ−1)2 (Iκ − 1)
(
FM ⊗ MFT

) : (Grad v∗)dν

+
∫

ν(t)
tn.v∗dl = 0 (2.83)

The equation may be rewritten such as

μ1Aij + μ2κBij(γ) + μ2(1 − 2κ)Cij(γ, θ) = Lij (2.84)

where Aij, Bij, Cij and Lij can be evaluated directly from the experimental measure-
ments. Index i is for different possible choices of virtual fields and index j is for
different possible stages of the experiment for which deformations and loads are
measured.

Equation2.84 is an equation of the unknown material parameters for each choice
of virtual field i and at every stage j of the test. The equation is linear in μ1, μ2κ and
μ2(1 − 2κ) but it is nonlinear in γ and θ. The solution is found by minimizing a cost
function defined such as

∑
i

∑
j

(
μ1Aij + μ2κBij(γ) + μ2(1 − 2κ)Cij(γ, θ) − Lij

)2
(2.85)

This cost function can be minimized by the simplex method or using a genetic
algorithm in case of multiple minima. The chosen virtual fields and other details
about the experiments can be found in [23, 26] for applications to blood vessels.

A recent extension of the method was proposed for the inverse characterization of
regional, nonlinear, anisotropic properties of the murine aorta [27]. Full-field biaxial
data were collected using a panoramic-digital image correlation system and the VFM
was used to estimate values of material parameters regionally for a microstructurally
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motivated constitutive relation. The experimental-computational approach was val-
idated by comparing results to those from standard biaxial testing. Results for the
non-diseased suprarenal abdominal aorta from apolipoprotein-E null mice revealed
material heterogeneities, with significant differences between dorsal and ventral as
well as between proximal and distal locations, which may arise in part due to dif-
ferential perivascular support and localized branches. Overall results were validated
for both a membrane and a thick-wall model that delineated medial and adventitial
properties.

Whereas full-field characterization can be useful in the study of normal arter-
ies, we submit that it will be particularly useful for studying complex lesions such
as aneurysms. Indeed, many vascular disorders, including aortic aneurysms and
dissections, are characterized by localized changes in wall composition and struc-
ture. Notwithstanding the importance of histopathologic changes that occur at the
microstructural level, macroscopic manifestations ultimately dictate the mechanical
functionality and structural integrity of the aortic wall. Understanding structure–
function relationships locally is thus critical for gaining increased insight into con-
ditions that render a tissue susceptible to disease or failure.

2.5 Conclusion

In this chapter, after a brief review of the constitutive relations commonly used for
soft tissues, two recent developments of the author’s experience were presented to
illustrate the potential of digital image correlation and inverse methods in experi-
mental biomechanics of soft tissues.

The inverse problems, including the semi-forward problems [20], posed by the
identification of material properties in soft biological tissues are not the simplest
due to the complex microstructure of soft biological tissues, their finite range of
deformation, their inter-individual variability, their anisotropy, their point-dependent
nonlinear behavior, and their permanent functional adaptation to the environment.
Determining the mechanical properties of such tissues has nevertheless become a
field of intense research since stress analysis in the tissues has been shown to be
meaningful for medical diagnosis in a number of medical applications as for instance
in the context of vascular medicine, indicating the risk of rupture of an aneurysm
[28] or the risk of stroke [29].

The current chapter has focused on in vitro characterization. The in vivo identifi-
cation of soft tissues present other important issues. They suppose both the existence
of reliable experimental facilities for inducing a mechanical stimulus (natural blood
pressure variations, local external compression, shear waves [30]) and the existence
of imaging devices for measuring the response of tissues (Ultrasound Imaging [31],
Magnetic Resonance Imaging [32] or Optical Coherence Tomography [33]). In all
these situations where some elements of the response of soft tissues subjected to
mechanical stimuli are measured, the access to the mechanical parameters is never
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direct and inverse problems have to be posed and solved. The inverse problems
posed by the in vivo identification of soft tissues will be discussed more specifically
in Chaps. 5 and 6 of this book.
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