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Abstract: Elastomers and soft biological tissues can undergo large deformations and exhibit time dependent
behavior that is characteristic of nonlinear viscoelastic solids. This article is intended to provide an overview
of the subject of nonlinear viscoelastic solids for researchers who are interested in studying the mechanics of
these materials. The article begins with a review of topics from linear viscoelasticity that are pertinent to the
understanding of nonlinear viscoelastic behavior. It then discusses the topics that enter into the formulation
of constitutive equations for isotropic, transversely isotropic and orthotropic nonlinear viscoelastic solids.
A number of specific forms of constitutive equations have been proposed in the literature and these are
discussed. Attention is restricted to constitutive equations that are phenomenological rather than molecular
in origin. The emphasis is then on nonlinear single integral finite linear viscoelastic and Pipkin—Rogers
constitutive equations, the latter containing the quasi-linear viscoelastic model used in biomechanics of soft
tissue. Expressions for the Pipkin—Rogers model are provided for isotropy, transverse isotropy and orthotropy.
The constitutive equations are then applied to the description of homogeneous triaxial stretch and simple
shear histories. The special case of uniaxial stretch histories is analyzed in detail. There is a discussion of the
deviation from linear behavior as nonlinear effects become important. Non-homogeneous deformations are
considered next. The combined tension and torsion of a solid cylinder on an incompressible, isotropic non-
linear viscoelastic solid is discussed in detail because of its importance in experiments involving viscoelastic
materials. A large number of solutions to boundary value problems have appeared in the literature and many
of these are summarized. The article concludes with comments about interesting topics for further research.

Key Words: Nonlinear single integral constitutive equations, Volterra integral equations, membranes, uniaxial and tension-
torsion histories

1. INTRODUCTION

Plastics, rubber, asphalt and biological materials exhibit time dependent mechanical response
such as creep under constant load, stress relaxation under constant deformation and delayed
strain recovery on unloading. This time dependence plays an important role in their perfor-
mance when used in load-bearing applications. For example, the time dependence of plastics,
rubber and asphalt is related to their dimensional stability following processing, damping
properties in vibration isolation and noise abatement, and heating during cyclic loading. The
time dependence of biological materials is a factor in understanding their function and per-
formance.

The theory of nonlinear viscoelastic solids provides a framework for modeling the time
and deformation dependent phenomena exhibited by these materials. There are two important
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aspects to this modeling. The first is the development of a constitutive equation that can
accurately describe the mechanical response of a viscoelastic material. The second is the
development of methods for using constitutive equations in conjunction with the governing
equations of thermo-mechanics to determine stresses and deformations in structures made of
these materials.

Although the theory of nonlinear viscoelasticity was formulated about 40 years ago, its
use in engineering applications has been limited. The books by Findley et al. [1] and Lockett
[2] represent the state of development of the subject as of about 30 years ago. Findley et al.
discussed a constitutive theory that had received a lot attention by contemporary researchers
and some of its structural applications. However, the theory fell into disuse because of its
practical limitations. Lockett [2] provided a summary of the contemporary constitutive the-
ories, but few applications. In a later review article, Morman [3] described the status of
nonlinear viscoelasticity as applied to rubbery materials and suggested important promis-
ing directions for further development. The emphasis was again on constitutive equations.
Schapery [4] reviewed constitutive theories for fracture and strength of nonlinear viscoelas-
tic solids, while Drapaca et al. [5] reviewed mathematical issues underlying the formulation
of constitutive equations for nonlinear viscoelastic solids.

The past few years have seen an increasing interest in the subject of nonlinear viscoelas-
tic solids as a result of research in the biomechanics of soft tissue and the need for efficient
engineering of polymeric and elastomeric structural components. It is therefore useful to pro-
vide of an overview of the current state of the subject. This article presents an introduction to
the continuum theory of nonlinear viscoelastic solids, discussing both constitutive equations
and solutions to boundary value problems that have appeared in the literature.

The outline of this paper is as follows. Section 2 presents a summary of results from lin-
ear viscoelasticity. This serves two purposes. First, the essence of viscoelasticity is the time
dependence of the mechanical response. In the context of linear viscoelasticity, the essential
characteristics of this time dependence can be discussed without considering complications
with the size of the deformation. Second, these characteristics will be used in Section 14 to
provide a basis of comparison for recognizing the onset of nonlinear response. The kinemat-
ics of solids undergoing large deformations and the laws of continuum thermo-mechanics are
presented, respectively, in Sections 3 and 4. The constitutive equation for linear viscoelas-
ticity presented in Section 2 illustrates the notion that the materials under consideration are
materials with a memory, that is, the current stress depends on the previous deformation
history. The constitutive assumption expressing this notion for nonlinear viscoelastic ma-
terials is introduced in Section 5, along with restrictions arising from the consideration of
superposed rigid body rotations, material symmetry and the assumption of incompressibil-
ity. The constitutive equations presented in this article are phenomenological rather than
molecular in origin. That is, the form of the constitutive equation arises from mathematical
assumptions about the mechanical response rather than assumptions about molecular mech-
anisms underlying that response. Several phenomenological types of constitutive equations
have been proposed in the literature and these are summarized in Section 6. The method
of determining material symmetry restrictions on these proposed constitutive equations is
described in Section 7. Results for isotropic materials are stated in Section 8. Results for
transverse isotropy and orthotropy for a specific constitutive equation are stated in Section 9.
An important concept in viscoelasticity is that of a clock, which accounts for time depen-
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dent material processes that are affected by temperature or deformation. This is discussed in
Section 10.

The remainder of the article is concerned with applications of the constitutive equation.
The constitutive equations emphasized in this article are expressed in terms of integrals over
the deformation history. Applications involving these constitutive equations lead to Volterra
integral equations, which are routinely solved by numerical methods. The essential features
of numerical methods of solution are described in Section 11. Section 12 describes the pre-
dictions of two specific constitutive equations when a material undergoes a step change in
a general homogeneous deformation. Section 13 considers the particular homogeneous de-
formation where a block undergoes triaxial stretch histories. Expressions relating stress and
stretch are developed for the two specific constitutive equations of interest. Section 14 con-
tains a detailed discussion of uniaxial stretch histories. It points out the connection between
linear and nonlinear viscoelasticity, including the small strain limit, the forms of expressions
for stretch dependent stress relaxation, the recognition of the onset of nonlinearity using
constant stretch rate histories or sinusoidal oscillations and small deformations superposed
on finite uniaxial stretch. Constitutive expressions for two other homogeneous deformations
are given, biaxial extension histories in Section 15 and simple shear histories in Section 16.
There are several families of non-homogeneous deformations that are possible in any incom-
pressible, isotropic solid. These are presented in Section 17. One of these deformations can
be used to describe the combined tension and torsion of a solid circular cylinder. Section 18
contains a detailed discussion of this problem for two reasons. First, it provides an example
of the use of a constitutive equation for nonlinear viscoelasticity in solving a boundary value
problem. Second, this important deformation is used in experimental work. Expressions re-
lating axial force, twisting moment, axial stretch and twist are developed for one of the
constitutive equations and can be used in interpreting experimental results. The solutions to
many boundary value problems involving large deformation of nonlinear viscoelastic solids
have appeared in the technical literature. A non-exhaustive summary showing the breadth
of applications is provided in Section 19, probably the first such summary. This article con-
cludes in Section 20 with suggested directions for further research in nonlinear viscoelastic
solids.

2. SOME RESULTS FROM LINEAR VISCOELASTICITY

As the word “viscoelasticity” suggests, the type of mechanical response of interest in this
article involves aspects of the response of elastic solids and of viscous fluids. Since the
response of fluids involves flow, or continuing deformation as time increases, it is necessary
in discussing viscoelastic response to account explicitly for time as a physical parameter. A
detailed comparison of viscoelastic response with that of elastic solids and viscous fluids that
shows the importance of time as a physical parameter is presented in [6, pp 1-10].

In order to recognize that a material is exhibiting nonlinear viscoelastic response, it is
useful to begin by presenting a number of results from linear viscoelasticity. Each result from
linear viscoelasticity presented here will be contrasted in a later section with the correspond-
ing result when there is nonlinear viscoelastic response. These results are presented in the
context of one-dimensional stress and strain states, the material being either in uniaxial ex-
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tension or simple shear. Thus, let o denote either a normal or shear stress and & denote the
corresponding normal or shear strain. Attention is confined to conditions when the material
is initially undeformed and unstressed, that is (1) = 0 and o (t) = O at times ¢ < 0. Because
the mechanical response of a viscoelastic solid depends on the history of its deformation,
it is important to distinguish between the current time “#” and a generic earlier time “s”,
s € [0, t]. The terminology “stress history” or “strain history” is used to refer to the set of

values for the stress o (s) or the strain (s), respectively, for s € [0, £].

2.1. Creep

Let a specimen be subjected to a step stress history, in which the stress is instantaneously
increased to some value o, at t = 0 and then held fixed. The typical strain response consists
of (i) an instantaneous increase in strain at t = 0 followed by (ii) continued straining in time
at a non-constant rate and (iii) an asymptotic approach to some limit value at time increases.
The behavior is called creep.

Let J (¢, o,) denote the strain at time t when the value of the stress is fixed at o,. Then,
(i) J(t,0,) = Owhent < 0, (ii) J(¢, o,) jumps to the value J(0,c,) at t = 0, and (iii)
J(t, 0,) monotonically increases to the limit value denoted by J(co,0,) as t — oo. The
jump in strain J(0, 0,) at + = 0 indicates instantaneous springiness or elasticity. The fact
that the material reaches a non-zero limit value of strain indicates solid behavior. If the strain
were to increase without bound, it would indicate fluid behavior, which is not considered
here. The relations o, vs. J(0, o,) and o, vs. J (o0, o,) describe, respectively, instantaneous
elastic response and the long-time or equilibrium elastic response. J (¢, o,) has a different
dependence on time t and stress o, for each material, and is therefore considered to be
material property called the creep function.

2.2. Stress Relaxation

Let a specimen be subjected to a step strain history, in which the strain is instantaneously
increased to some value ¢, at t = 0 and then held fixed. The typical stress history required
to produce this strain history consists of (i) an instantaneous increase in stress at t = 0
followed by (ii) a gradual monotonic decrease of stress at a non-constant rate and (iii) an
asymptotic approach to some non-zero limit value as time increases. The behavior is called
stress relaxation.

Let G(¢, ¢,) denote the stress at time t when the value of the strain is fixed at ¢,. Then,
(1) G(t,e,) = 0when t < 0, (ii)) G(¢, €,) jumps to the value G(0, ¢,) at + = 0, and (iii)
G(t, ¢,) monotonically decreases to the non-zero limit value denoted by G (oo, ¢,) as t —
00. The jump in stress G(0, ¢,) at + = 0 is another indication of instantaneous springiness
or elasticity. That fact that a non-zero stress G (o0, ¢,) is required to maintain the strain at
&, is another indication that the material is a solid. If G(o0, ¢,) = 0, then no stress would
be required to hold the material in a strained state, a characteristic of the response of fluids.
The relations G(0, ¢,) vs. &, and G (00, &,) Vs. &, also describe, respectively, instantaneous
elastic response and the long-time or equilibrium elastic response. G (¢, €,) has a different
dependence on time t and strain ¢, for each material, and is therefore considered a material
property called the stress relaxation function.
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2.3. Isochrones

The creep and stress relaxation functions have two independent variables, time and stress
or strain, respectively. Their dependence on time can be determined from creep or stress
relaxation experiments. Isochrones are useful for determining their dependence on stress or
strain. Suppose a program of stress relaxation experiments is carried out for different values
of &,. At a fixed time #, the plot of o (f) = G(f,¢,) vs. &, is called a stress relaxation
isochrone. In a similar manner, consider creep experiments carried out for different values of
o,. At a fixed time 7, the plot of &, vs. e(f) = J (¢, 0,) is called a creep isochrone.

2.4. Constitutive Assumption

The phenomena of creep and stress relaxation show that the mechanical response of the
material depends on time. They also illustrate the duality of responses, strain is found under
stress control conditions, or stress is found under strain control conditions. This further raises
the question of how to determine the strain response when the stress varies with time or
the stress response when the strain varies with time. Experimental results provide further
evidence of this time dependence and imply that the stress o (¢) at time ¢ depends on the
preceding strain history, &(s), s € (—o0, t], or that that the strain ¢(¢) at time t depends on
the preceding stress history, o (s), s € (—oo, f]. It was assumed earlier that o (s) = ¢(s) = 0,
s € (—00, 0). The notation s € (—o0, ] is used for convenience and to allow for a history to
have a jump from the value of zero at t = 0— to a non-zero value at t = 0+.

The constitutive assumption for the stress at time t in terms of the strain history up to
time 7 is denoted by

o(t) = G [E(S)K:—oo ; t] ) 2.1

Q is called a response functional. The notation &(s)|’____ indicates dependence on the entire
strain history, including the jump at ¢ = 0. The explicit dependence on t indicates that the
material is aging, i.e. when there is curing of concrete or epoxy. The explicit dependence
on the parameter t then represents the time since the material was created. Equation (2.1)
represents the essential nature of viscoelasticity, the evolution of a strain history as time
increases determines the evolution of the corresponding stress history as time increases.

There can also be the dual constitutive assumption for the strain in terms of stress his-
tory,

e(t) = [a(s)ls__oo pt] . (2.2)

This shows the dual nature of viscoelasticity. For every statement of stress in terms of strain
history, there is a dual statement of strain in terms of stress history.

2.5. Linearity

A central issue in the modeling of viscoelastic materials is the determination of the mathe-
matical form of the response functional g in (2.1) or j in (2.2). An important assumption
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in this regard is that the material response is linear. The property of linearity of response
consists of two conditions: scaling and superposition. These are discussed here only for the
stress response to a strain history. Analogous comments apply to the strain response to a
stress history.

Let £,(s), e2(s), s € (—00, t] be two strain histories whose stresses at time t are o (¢),
o,(t), respectively. Let 4, 4, be constants. The composite strain history

S(S) = ),181(.3') + )"282(*9)5 NS (_OO, t] s (23)

is constructed by scaling strain history &,(s) by 1;, &2(s) by 4, and superposing (or adding)
the results. If the stress for the strain history (2.3) is given by

o(t) = Lio1(t) + Ao2(2), 2.4)

for all times t, constants A1, 4, and strain histories ¢ (s), &2(s), s € (—00, t], the response is
said to be linear. In other terms, the assumption of linearity of response states that if a strain
history ¢(s) is scaled by constant 1, then the corresponding stress o (¢) is also scaled by A and
if two strain histories are superposed, then the corresponding stresses are also superposed.
A useful corollary of linearity of response is that there is no interaction between the stress
history responses to separate strain histories. This assumption is assumed to be reasonable
when the magnitude of the strain has been small for all past times, i.e. |e(s)] << 1 for
s € (—oo, t].

It is important to note that the property of linearity of response does not refer to the shape
of any material response curve. It refers to a method of constructing the stress response to
a composite strain history by scaling and superposing the stress responses to the component
strain histories. Scaling and superposition have convenient graphical interpretations that lead
to important and useful tests for determining if the mechanical response of a material can be
regarded as being linear. For a discussion of these, see [6, pp. 17-24].

2.6. Consequences of Linearity

In the remainder of this article, it is assumed that the material does not age. A discussion of
linear aging viscoelastic materials parallel to that presented below is given in [7]. When the
material is non-aging, it can be shown that the parameter t does not appear explicitly in the
response functionals G and 7. In addition, Equations (2.1) and (2.2) become, respectively,

a(t) =G et — )], (2.5))
e(t) = J [o(t =92, . (2.57)

In the histories appearing in the arguments of (2.5, ), the time variable s is measured back-
wards from the current time . Its physical dimension can be thought of being “seconds ago”.

Let H(t) denote the Heaviside step function, i.e. H(t) =0, ¢ € (—00,0) and H(¢) = 1,
t € [0,00). When there is linearity, the stress response to the step strain history &(s) =
e, H(t) is
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(1) =G (t,&,) =G [e,H(t — )2 =€,G [H — )12, . (2.6)
where the last step follows from the scaling property. Define
G(t)=G[H({t—s),]. (2.7)

Equations (2.6) and (2.7) show that when there is linearity of response, G(t, &,) is linear in
809

G(t,e,) = e,G(1). 2.8)

G (¢) is called the stress relaxation modulus. It is assumed that G(0) > 0 and G () monoton-
ically decreases to a non-zero positive limit as t — oo. It is convenient to introduce the
notation G(0) = G, and G, for the limit of G(¢) as t — oo. Gurtin and Sternberg [8], in
their fundamental article, show that scaling and superposition lead to the representation for
(2.51) as a Stieltjes integral,

a(t):/r G(t — 5)de(s). 2.9)

In a similar manner, the strain response to the step stress history o (s) = o,1(¢) is
e)=J(t,0,) =T [0, Ht —5)32] =0,T [H{1 —5)I2,] . (2.10)
Denote
J)=J [H@1 —9)I2,] . (2.11)
Then, the creep function J (¢, o,) is linear in o,
J(t,0,) =0,J(1). (2.12)

J(¢) is called the creep compliance. It is assumed that J(0) > 0 and J(¢) monotonically
increases to a finite limit Jo, > 0 as r — o0. It is convenient to introduce the notation
J(©0) = J, and J, for the limit of J(f) as t — oo. It is shown in [8] that scaling and
superposition lead to the following representation for (2.5,):

e(t) = /_t J(t —s)do(s). (2.13)

o)

The constitutive equations (2.9) and (2.13) are written in the form of Stieltjes convo-
Iutions [8] in order to account for jump discontinuities in their arguments. When there is a
jump in the stress or strain histories at + = 0 and the histories are differentiable for r > 0,
(2.9) and (2.13) reduce to
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o(t) = 8(O)G(t)+/ Gt —s) g(s) s, (2.14))
e(t) = o (0)J (1) +/IJ(t _ 9379y (2.14,)
0 ds

Alternate forms for (2.14;,) can be obtained by integration by parts and a change of the
integration variable,

o(t) = e()G(0) —I—/0 dGis)a(t —s)ds = e(t)G(0) —I—/O %__s;)s(s)ds, (2.15)
e(t) = o(t)J(0) +/0 d{iis)a(t —s)ds = o (¢)J(0) +/0 %__Ss))a(s)ds. (2.155)

A complete list of alternate forms is given in [6, pp. 64—65].

As a concluding comment for this section, note that (2.8) and (2.12) show that the stress
relaxation isochrone at time 7 is a straight line with slope G(¢) and the creep isochrone at
time ¢ is a straight line with slope 1/J(¢).

2.7. Mechanical Analogs

Another approach used to develop constitutive equations for linear viscoelastic response in-
volves mechanical analogs. These are mechanical devices formed by combining linear elastic
springs and linear viscous dampers in series or parallel. The devices can be shown to exhibit
a time dependent response that is similar to that observed in viscoelastic materials, namely,
creep under constant load and force relaxation under constant deformation. For this reason
these devices are treated as mechanical analogs of viscoelastic response. Since the springs
and dampers are described by linear equations, as are the equations for the kinematics of
deformation and force transmission, there is a linear relation between the overall force and
deformation. These are interpreted as relations between stress and strain for a material and
have the form

d'o + "o +---+ do + e + e +---+ de + (2.16)
n n o n n 08
pd" pldtnl Pld Do0 Cld QIdt”I (hd q
where p,, 4., P1, 415 - - - » Pn» qn are constants to be determined by experiments.

Equation (2.16) is valid only when the strain or stress histories are sufficiently smooth.
When either has a jump discontinuity, as might occur at ¢ = 0, (2.16) must be supplemented
by appropriate jump relations. The appropriate relations between the initial conditions on the
stress and strain and their first n-1 derivatives, that are consistent with (2.16), were developed
in [8]. A complete statement of the constitutive equation obtained from the use of mechanical
analogs then consists of both an equation of the form (2.16) and a set of appropriate initial
conditions. This point is often overlooked in applications. Any constitutive equation of form
(2.16), along with the appropriate initial conditions, can be expressed in either the form
(2.14)) or (2.14;). On the other hand, a constitutive equation of form (2.14,) or (2.14,) can be
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reduced to the form (2.16) if and only if the creep compliance J(¢) and the stress relaxation
modulus G (¢) satisfy specific conditions. A detailed discussion of this point can be found in
[8]. Constitutive equation (2.16) gives equal emphasis to the stress and the strain. It therefore
can be used to obtain the dual constitutive equations and their inverses.

2.8. Relation Between G (t) and J (1)

When the step stress history, o (t) = g,, t > 0, and the corresponding creep strain &(f) =
o,J () given by (2.12) are substituted into (2.9) or (2.14,), the result is

1:/ G(t —5)dJ (s), 2.17))

o0

or

1=J(O)G(t)+/ G(r — )dJ(S) 2.17,)

Similarly, when the step strain history, £(¢) = ¢,, t > 0, and the corresponding stress relax-
ation response o (t) = ¢,G (¢) given by (2.12) are substituted into (2.13) or (2.14,), the result
is

1= /t J(t — $)dG(s) (2.18))

o0

or

dG(s)
d
ds S

1 =G(O)J(t)+/lJ(t—s) (2.18y)
0

Equations (2.17,,) and (2.18, ) can be transformed into each other by an integration by
parts. They establish alternate forms of a relation between G(¢) and J (¢). If J(¢) is known,
then (2.17;) is a linear Volterra integral equation for G(¢). Conversely, if G(¢) is known,
(2.18,) is a linear Volterra integral equation for J (¢). It is known that these equations have a
unique solution. Because of this and the fact that (2.17,) and (2.18,) relate G(¢) and J(¢) by
Stieltjes convolutions, Gurtin and Sternberg [8] refer to G (¢) and J () as Stieltjes inverses of
each other.

Thus, corresponding to a given stress relaxation modulus G(z), there is a uniquely deter-
mined creep compliance J(¢), and vice versa. Several relations between their properties can
be determined from (2.17,) and (2.18,), (see [6, pp. 67-71]),

GHJ) <1, =0, (2.19)
with

G,J, =1, Gyl =1. (2.20)
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The simplest model of a linear viscoelastic solid that exhibits all of the important re-
sponse characteristics, instantaneous elastic response, long-time or equilibrium elastic re-
sponse and gradual stress relaxation, is the standard linear solid, also known as the three-
parameter solid. Its stress relaxation modulus is given by

G(1) = Goo +[G, — Gole™7x, (2.21)

where 7 is called the characteristic stress relaxation time. The corresponding creep compli-
ance, found by applying the Laplace transform to (2.18,), is given by

J(1) = Joo + [y — Jscle™"7€, (2.22)

where 7¢ is called the characteristic creep time. G,, J,, G, Jx are related by (2.20) and
the characteristic times are related by

G,

Tc = GOOTR. (2.23)

Since stress relaxation implies G,/ G, > 1, it follows from (2.23) that 7 > 7.
Motivated by (2.21) and (2.22), the stress relaxation modulus G (¢) and creep compliance
J (t) are often decomposed into their long time equilibrium values and time dependent parts,

G(t) = Go + AG(D), (2.24)
J(@t) = J — AJ(D), (2.24,)

where AG(t) > Oand AJ(t) > Oast — oo.
Let Equations (2.15, ) be rewritten as

t d _

o() = G0)e() + /0 %e(s)ds, (2.25))
t d _

e(t) = J(0)o (1) + /O Ha(s)ds. (2.25,)

Suppose that G(¢) and J (¢) are known. For a given stress history, (2.25)) is a linear Volterra
integral equation for the corresponding strain history. Conversely, for a given strain history,
(2.25,) is a linear Volterra integral equation for the corresponding stress history. It is straight-
forward to show, using (2.17;) or (2.18,) and elementary operations of calculus, that (2.25,)
is the solution to (2.25;) and vice versa. Stated differently, (2.25,) and (2.2r;) are the in-
verses of each other. Thus, for non-aging, linear viscoelastic materials, the dual constitutive
equations are also inverses.
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2.9. Constant Strain or Stress Rate Histories

Consider the strain history given by ¢(¢) = at, t > 0, where o is a positive constant. When
this is substituted into (2.14,), the stress is given by

o(t) =a /0 t G(s)ds. (2.26)

Note that ¢ (0) = 0 and do (¢)/dt = aG(t) > 0. Since the stress relaxation modulus de-
creases monotonically with ¢, so does do (¢)/dt. A plot of o vs. f based on (2.26) thus in-
creases from zero with a decreasing slope. It is common practice to express the time in terms
of the strain, t = ¢/a, and substitute the result into (2.26), thereby relating o to &,

e/a
o) =a / G(s)ds. (2.27)
0

When there is stress relaxation, a plot of ¢ vs. ¢ based on (2.27) is not a straight line. The
material is often described as having a nonlinear ¢ — & relation. In other words, a linear
material appears to have a nonlinear stress-strain relation.

There are two comments to be made about this observation. First, when the adjective
“linear” is used to describe material response, as in Section 2.4, it has a different meaning
that when it used to describe the shape of the ¢ — ¢ plot. A graphical construction in [6, p.
40] shows how a material that exhibits linearity of response and stress relaxation produces a
plot of ¢ — ¢ that is not a straight line. A ¢ — ¢ plot that is a straight line occurs when there is
no stress relaxation, i.e. G(t) = G,, t > 0. In other words, it is misleading to use the shape
of the ¢ — ¢ plot to draw inferences about the material response. The second point is that
each different strain history produces a different ¢ — ¢ plot. This point can readily seen from
(2.26), which shows that a new ¢ — ¢ plot is obtained for each new value of the strain rate o.

Consider the stress history given by o (¢) = ft, t > 0, where S is a positive constant.
From (2.14,), the strain history is given by

e(t) = ,B/Ot J(s)ds. (2.28)

Note that ¢(0) = 0, de(¢)/dt = FJ(t) > 0 and it monotonically increases with ¢. The plot
of ¢ vs. t is concave upwards. A plot of ¢ vs. ¢ is produced by expressing ¢ in terms of o,
t = o/, and then substituting the result into (2.29),

a/B
&= ﬁ/ J(s)ds. (2.29)
0

The plot of o vs. ¢ is not a straight line, but increases from the origin with a decreasing slope
1/J (o /p). Different ¢ — ¢ plots are produced by stress histories with different rates 5. The
constant strain rate ¢ — ¢ plots do not generally coincide with the constant stress rate ¢ — ¢
plot.

In summary, a plot of ¢ vs. ¢ for a non-aging, linear viscoelastic material provides lim-
ited information about its mechanical response.



NONLINEAR VISCOELASTIC SOLIDS—A REVIEW 311

2.10. Sinusoidal Strain Histories

A fundamental strain history used to study viscoelastic materials is the sinusoidal strain
history,

e(t) =¢,sinwt, t >0, (2.30)

where ¢, is a constant such that |¢,|] << 1. The corresponding stress history is obtained
by substituting (2.30) into (2.14,). It can be shown that the stress reaches a state of steady
sinusoidal oscillations described by

o(t)=¢, [G’(a)) sinwt + G”(w) cos a)t] (2.31)
or
o (t) = &, [G'(@)* + G (@] sin (wt + 6()) , (2.31,)

where tand(w) = G"(w)/G'(w). G'(w) and G”(w) are functions of frequency w and are
expressed in terms of the stress relaxation modulus by

G(w) = Gy + a)/ AG(s) sin wsds, (2.32))
0

G"(w) = a)/ AG(s) cos wsds, (2.32,)
0

where G, and AG(t) were defined in (2.24;).

It is seen from (2.31,) or (2.31,) that the stress varies sinusoidally with time at the same
frequency w as the strain, but with amplitude ¢, [G’(a))2 + G” (w)z} "/ and phase difference
J(w). G'(w), the coefficient of the term in (2.31;) in phase with the strain, is called the
storage modulus. G”(w), the coefficient of the term in (2.31,) out of phase with the strain,
is called the loss modulus. It can be shown using (2.32,) that the phenomenon of stress
relaxation implies that G”(w) > 0. It can also be shown that the work done on the material
per cycle is 27 G” (w).

G'(w) and G”(w) are an alternate set of material properties and methods have been
developed to measure them. They are defined by (2.32, ;) in terms of the Fourier transform
of AG(t). Consequently, G(¢) can be expressed in terms of G’(w) and G”(w) using the
inverse Fourier transform,

G// (a))

w

2 o0
Gt)=Gp+— / cos wtdw, (2.33)
T Jo

or

2 o0 /
G(t)= = / F®) inwrdo. (2.33,)
T Jo (03]
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It is common practice to use complex variables to describe the sinusoidal response of
viscoelastic materials. Thus, instead of the strain history (2.30), one specifies ¢, exp(iwt)
where i = +/—1. The complex modulus G*(w) is defined by

G*(w) = G'(w) +iG" (w). (2.34)
Then (2.31) is written
o(t) = e,G*(w)e'". (2.35)
Since the strain history in (2.30) is the imaginary part of &, exp(iwt), the stress response is
the imaginary part of (2.35).
It is also possible to specify the sinusoidal stress history
o(t) =o0,sinwt, (2.36)
the imaginary part of o, exp(iwt). The strain history is
e(t)y=o0, [J’(a)) sinwt + J” (w) cos a)t] , (2.37)
where J'(w) and J”(w) are components of the complex compliance
J(w) = J(w) +1J" (). (2.38)
The strain history in (2.37) is the imaginary part of ¢ ,J *(w)e'*'.

J'(w) and J”(w) can be expressed in terms of the creep compliance J (¢) by expressions
that are analogous to (2.32 ,). These are not presented here, but can be found in [6, p. 121].
It can be shown that G*(w) and J*(w) satisty

G (w)J" (w)=1 (2.39)
for all frequencies w.

By use of (2.30) and (2.31,), the stress o can be expressed directly in terms of the strain
€ by

o

?=2Goe+((G) +(G")") e =2 (G")". (2.40)

This describes an ellipse whose properties depend on w: (i) the enclosed area is &2z G" (w),
(ii) the ¢-axis intercept is €,G”/ ((G/)2 + (G”)z) 1/2, (iii) the o -axis intercept is 0 = ¢,G”,

and (iv) the maximum value of o is = ¢, [(G/)2 + (G”)z] "2 The ellipse approaches the
straight line 0 = G(0)¢ as w — 0 and the straight line ¢ = G(0c0)e as @ — 00.
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2.11. Constitutive Equation for Three Dimensional Response

Section 2 concludes with a statement of the constitutive equation for the three dimensional
response of an isotropic non-aging linear viscoelastic material. The infinitesimal strain tensor
is denoted by e and the stress tensor is denoted by o.

It is shown in [8] that there are only two independent material properties, here chosen as
a bulk modulus K (¢) and a shear modulus x(¢). The three-dimensional version of (2.14;) is

6(t) = I{ {K(l) - %y(l)} tre(0) + /l {K(t —5) — %,u(t — s)} %tre(s)ds}
0

t
d
+ 2u(t)e(0) + 2/ u(t — s)d—e(s)ds. (2.41)
0 )
When K (¢) and u(¢) are independent of time, (2.41) reduces to the constitutive equation for
a linear isotropic elastic material. It is also possible to state the three dimensional version of
(2.14,), that is, the dual to (2.41). This is not done here.

3. NONLINEAR VISCOELASTIC SOLIDS—KINEMATICS

This section presents the concepts for the kinematics of a body that underlie the study of
viscoelasticity. See Spencer [9] or Atkin and Fox [10] for details.

A body is a set of material points called particles. A typical particle P is identified or
labeled by its position vector X at some reference time #,. The domain of X at time ¢, is
called a reference configuration of the body. It is assumed that a viscoelastic solid body has
the same configuration for times t < 0, which is taken as its reference configuration. Let
x(s) denote the position of particle P at a generic time s € (—oco, f]. The motion of particle
P is described by the vector function

x(s) =X, s e (—00,0)
x(s) = x(X,s), sel0,r]. (3.1

For a fixed X, (3.1) gives the path of particle P as time s increases. At a fixed time s, (3.1)
gives the positions x(s) of all particles of the body. The domain of x(s) at time s is called the
configuration of the body at time s. This motion is assumed to be invertible so that the label
X of a particle can be expressed in terms of its position x(s) at time s,

X =y"(x(s),5), sel0,1]. (3.2)

Let (3.2) be evaluated at time 7 and then substituted into (3.1). This introduces a description
of the motion relative to the current configuration

x(s) :X(X_l (X([),Z),S) =f((x(t),t,s). (3.3)
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The velocity and acceleration of particle P at time ¢ are given by

x (X, 1) = W, (3.4)
oMy (X,
%(X, 1) = %, (3.5)

where the superposed dot denotes the partial derivative with respect to time holding the
particle label fixed. When the independent spatial variable is X, (3.4) and (3.5) give the
material (or Lagrangian) description of the velocity and acceleration. Relation (3.2) evaluated
at time ¢ can be used to change the independent spatial variable in (3.4) and (3.5) from X to

x(t) giving
vix,1) =x (' (x,1),1), (3.6)
a(x,r) =X (' (x,1),1). (3.7)

Relations (3.6) and (3.7) give the spatial (or Eulerian) description of the velocity and accel-
eration.
By (3.1), the deformation gradient history is

F(s) =1, se€(—00,0)

0
F(s) = % sel0,1]. (3.8)
The velocity gradient at time ¢
ov
L=—. 39
p (3.9)
is related to the deformation gradient by use of (3.6) and (3.8),
L =FF". (3.10)

F(s) contains information that compares the rotation and distortion in the neighborhood
of a material particle at time s to its neighborhood in the reference configuration. It is as-
sumed that

detF(s) >0, se][0,1]. (3.11)
det F(s) represents the ratio of the volume of the neighborhood of a particle at time s to that
in the reference configuration.

Application of the Polar Decomposition Theorem of linear algebra leads to

F(s) = R(s)U(s) = V(s)R(s), s €[0,¢], (3.12)
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where the factors U(s), V(s), and R(s) satisfy
R(s)R(s)" = R(s)"R(s) =1, (3.13)
U(s) = Us)", V(s) =V(s)". (3.14)

The orthogonal tensor R(s) represents the rigid body rotation of the neighborhood of the
particle while U(s) and V(s), called the right and left stretch tensors, describe the local
deformation of the neighborhood. It is tedious to compute tensors R(s) and U(s) from F(s).
For this reason, one introduces the more easily computed tensor,

C(s) =F(s)"F(s) = U(s)*. (3.15)
The tensor C(s), called the right Cauchy—Green strain tensor, has the same principal direc-
tions as U(s) and its principal values are the squares of those of U(s). Hence, C(s) is regarded

as containing the same information as U(s) about the local deformation of the neighborhood.
Let a tensor B(¢) be defined by

B(t) = F(1)F(1)". (3.16)

B(?) is called the left Cauchy—Green tensor and arises when considering isotropic materials.
In nonlinear viscoelasticity, F(s) is often decomposed as follows:

F(s) =F,(s)F(t), 0<s <t (3.17)
where
_0x(s)
F.(s) = X0 (3.18)

F,(s) is called the relative deformation gradient, and is the deformation gradient associated
with the description of the motion in (3.3). It follows from (3.11) that detF,(s) > 0. F;(s)
contains information that gives the rotation and deformation of the neighborhood of a particle
in the configuration at time s relative to its neighborhood in the configuration at time #. This
information is obtained by applying the Polar Decomposition Theorem to F,(s). Thus, as in
(3.12)

F,(s) = R(s)U,(s) = V,(5)R,(s), s€[0,1], (3.19)
where R, (s), U, (s) and V, (s) satisfy
R (R (5)" = R()'R,(s) =L,
U(s) = U(s)",  V,(s) = V,(s)". (3.20)

It is convenient to define the relative right Cauchy—Green strain tensor
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C(s) =Fi(s)"F,(s). (3.21)

4. FIELD EQUATIONS

Nonlinear viscoelastic solids, being materials whose mechanical response depends on the
history of the motion, satisfy the field equations and boundary conditions of continuum me-
chanics at each time ¢ in the configuration and surface occupied by the body at that time. The
field equations are stated here in local form. The arguments of field variables are not stated
for ease of presentation. For further details, see Spencer [9] or Ogden [11].

4.1. Conservation of Mass

Let p, and p denote the mass per unit volume at a particle in the reference and current
configurations, respectively. Conservation of mass requires that

pdetF =p,. 4.1

4.2. Conservation of Linear and Angular Momentum

The body force per unit mass on a material particle in the current configuration is denoted
by b, the unit outer normal to an area element on the surface of the current configuration is
denoted by n, the surface traction or force per unit area on this surface area element is denoted
by T and the Cauchy or true stress tensor is denoted by 6. Application of the Principles of
the Conservation of Linear Momentum leads to

T=¢n 4.2)
on the current surface and
dive + pb = pa 4.3)

at each point within the current configuration. The Principle of the Conservation of Angular
Momentum leads to the statement that the Cauchy stress tensor is symmetric,

6 =o¢. (4.4)

4.3. Conservation of Energy

[IPRL)

The internal energy per unit mass at a material particle is denoted by “e”, the rate of heat

[Tl

supply per unit mass to a particle is denoted by “r”, the heat energy per unit time (heat flux)
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per unit area through a surface area element of the current configuration with unit outer

normal n is denoted by “q”, and the heat flux vector is denoted by q. Application of the
Principle of the Conservation of Energy in the current configuration leads to

g=q'n 4.5)
on the current surface and to
pé = treFF~! + pr — divq (4.6)

at each point within the current configuration.

4.4. Entropy Inequality

The absolute temperature is denoted by 6 and the entropy per unit mass of a particle is
denoted by #. It is assumed that the entropy satisfies the Clausius—Duhem inequality, whose
local form is

. Pr - (4
> — —div (—) . 4.7
Pz 7 (4.7)
The current configuration is usually unknown and is determined as part of the process of
solving a particular problem. Consequently, the field equations and boundary conditions are
often transformed so that they are stated in the known reference configuration. Their state-
ment is omitted here. For a detailed derivation of the equations, see Ogden [11].

5. CONSTITUTIVE THEORY FOR NONLINEAR VISCOELASTIC SOLIDS

The constitutive theory for nonlinear viscoelastic materials is summarized in this section. A
thorough treatment can be found in Noll [12] and the fundamental treatise by Truesdell and
Noll [13].

For a viscoelastic solid the constitutive assumption states that the stress o, internal en-
ergy “e” and specific entropy # at time ¢ depend on histories of the deformation gradient F,
temperature ‘¢’ and temperature gradient. Thermodynamic arguments show that the stress,
internal energy, and specific entropy do not depend on the temperature gradient gradd. This
development is not presented here. Instead, the emphasis is on presenting the tensorial struc-
ture of the constitutive equations. Temperature, being a scalar, plays no role in determining
this tensorial structure and will not be explicitly mentioned.

As in the case of linear viscoelasticity, it is assumed that the solid is in its reference
configuration for r < 0, i.e. F(r) = I, ¢ < 0. It is further assumed that the material does not
age and the stress at the current time ¢ depends on the history of the deformation gradient,
that is, on all values of F(s), s € (—o0, t], thereby allowing for jump discontinuities at ¢t = 0.
This constitutive equation expressing this dependence is denoted by
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o(t) = F [F(t —5)|%,] , (5.1)

a generalization of (2.5). F is called a tensor-valued response functional. There are three
main sources of restrictions on F: (a) the influence of superposed rigid body motions, (b)
material symmetry, (c) restrictions due to thermodynamics. For present purposes, the only
restrictions considered here are those due to the influence of superposed rigid body motions
and material symmetry.

5.1. Influence of superposed rigid body motions

Consider the motion x(s) =x(X,s), s € [0, ¢] in (3.1). Suppose that the body undergoes
a second motion x(s) =y* (X, s) that is obtained from the first by a superposed rigid body
motion,

(X, s) =Q(s) [X X,s) — d(s)] , sel0,1]. (5.2)

Vector d(s) represents a rigid body translation. Q(s) represents a rigid body rotation and
satisfies

Q)Q()" = Q)" Q(s) =L (5.3)

It is assumed that the superposed rigid body motion affects the stress at time ¢ by only its
rotation at time ¢. This leads to the condition that

F QU =9)F( —5)IZ,] = Q) F [F(r — )2 Q)" (5.4)

for any rotation history Q(s) as long as it satisfies (5.3). This, when combined with the Polar
Decomposition of F(s) in (3.12) leads to the statement that (5.1) is of the form

6(t) = R(t)F [U(r — )| R(1)". (5.5)

Because (i) the determination of R(s) and U(s) from F(s) using (3.12) is tedious, (ii) U(s)
and C(s) contain essentially the same information about the local deformation and (iii) F is
as yet arbitrary, (5.5) is usually restated without loss in generality in the form

o(1) =F1)G [C(t — 92| F()', (5.6)

where G is a new response functional. It is straightforward to show that (5.6) satisfies (5.4).

5.2. Material symmetry

The concept of material symmetry arises from the fact that a material has some physical mi-
crostructure in its reference configuration, such as a crystalline structure or a randomly ori-
ented macromolecular network. Consider a sample of material in its reference configuration
and its microstructure. Suppose there is a transformation of this reference configuration to a
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new configuration such that the material appears to have the same microstructure as before.
Let both the original and transformed configurations be subjected to the same homogeneous
deformation history with deformation gradient F(s). The underlying microstructures, which
appear to be the same in their respective reference configurations, are distorted in the same
way. The stresses are assumed to be the same at each time ¢ and these configurations are said
to be mechanically equivalent.

A transformation of the original reference configuration to one that is mechanically
equivalent is a linear transformation denoted by H. One restriction on H is that it produce
no volume change and this leads to the condition that |[det H| = 1. In addition, for most
equivalent microstructures of interest, H is a rotation or a reflection and satisfies

HH =H'H=1 (5.7)

Symmetries of a material are described by specifying the set of transformations H that
lead to equivalent microstructures. These form a mathematical entity called a material sym-
metry group. The material symmetries commonly used to describe nonlinear viscoelastic
materials are isotropy, transverse isotropy and orthotropy.

ISOTROPY: An isotropic material exhibits the same response with respect to all directions
associated with its microstructure. A material is said to have hemihedral or proper isotropy
if the transformations H of the material symmetry group are rotations. It is said to have
holohedral or full isotropy if the material symmetry group consists of rotations and a central
reflection.

Materials with anisotropy have specific directions associated with their microstructure.
Let E;, E,, E; be an orthonormal set of vectors that define these directions in the reference
configuration.

TRANSVERSE ISOTROPY: A material is said to have transverse isotropy with respect to the
direction indicated by, say, E; if the material symmetry group consists of rotations about
E;. Different classes of transverse isotropy arise by also including reflections about planes
perpendicular to these vectors.

ORTHOTROPY: A material is said to have orthotropy if the material symmetry group contains
90° rotations about each of the vectors E|, E,, E;. Different classes of orthotropy arise by
also including reflections about planes perpendicular to these vectors.

For each transformation H of a material symmetry group, the above discussion implies
that the constitutive equation (5.1) must satisfy restriction

F[F(t = )% = F [F(t — s)HIZ] . (5.8)

Material symmetry restrictions can be imposed on the response functional G by substi-
tuting (5.6) into (5.8) giving

H'G[C(t—s)2 H=G [H'C(t — )| H] . (5.9)
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Note that this restriction is imposed by transformations of the reference configuration and
is independent of the subsequent deformation history. In other terms, the proper statement
of a material symmetry is that a material is isotropic, transversely isotropic or orthotropic
with respect to its reference configuration. The statement is sometimes made that a defor-
mation causes a material to become anisotropic. A more precise statement is that there is a
material symmetry group associated with the current configuration that is determined using
Noll’s rule [12] from the symmetry group associated with the reference configuration and
the current deformation gradient.

5.3. Constraints

The possible motions of a body may be limited by constraints such as incompressibility or
inextensibility in certain directions. Such constraints impose restrictions on the constitutive
equations. Discussion here is restricted to the constraint of incompressibility.

In many polymeric materials, the volume change during deformation is observed to be
very small. By (3.11) and (4.1), this leads to an idealized material model for which any
possible motion must satisfy the constraint,

detF(s) =1, se][0,¢]. (5.10)

Motions that satisfy (5.10) are described as being isochoric. Consideration of the restrictions
of the thermodynamics for materials with constraint (5.10) leads to a modified form for
constitutive equation (5.1),

o(t) = —pl+ F [F(r — 9)I7%,] . (5.11)

in which p is an arbitrary scalar. The restriction imposed by consideration of the influence
of superposed rigid body motions must still be satisfied so that F in (5.11) still must satisfy
(5.4). Equations (5.5) and (5.6) then become

o(t) = —pl+ R()F [U(t — )|, R, (5.12))
o(t) = —pl+F(1)G [C(t — )|, F(1)". (5.12,)

in which detU(s) = detC(s) = 1. Similarly, material symmetry considerations imply that
the response functionals F and G in (5.12, ») satisfy (5.8) and (5.9), respectively.

5.4. A Special Result for Isotropic Materials

There is an interesting result for isotropic nonlinear viscoelastic solids that does not depend
on the form of the response functional J. Since (5.4) and (5.8) must hold for arbitrary rota-
tion transformations H and rotation histories Q(s), s € [0, ¢], Noll [12] has shown that the
constitutive equation can be written in the form

o(1) =G [B(t); C.(r — )|, , (5.13)
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vyhere B(?) was defined in (3.16) and C,(s) was defined in (3.21). The response functional
G satisfies

00
s=0

G[H'B()H; H'C,(r — s)H| | = H'G [B(1); C,(r — )2 H (5.14)
for all orthogonal transformations H. G is said to be an isotropic functional. If, in addition,
the material is incompressible and isotropic, the constitutive equation can be written as

(1) = —pI+G [B(1); C,(t — 5)I%,] , (5.15)

where Q satisfies (5.14).

6. SOME PROPOSED CONSTITUTIVE EQUATIONS FOR NONLINEAR
VISCOELASTIC SOLIDS

There is no generally accepted well-defined form for the constitutive equations (5.5) and
(5.6) for nonlinear viscoelastic solids as there is for linear viscoelastic solids. A number of
specific representations for the response functionals F and G have appeared in the literature
and these are summarized in the book by Lockett [2] and the recent review article by Drapaca
et al. [5]. The latter also summarizes the mathematical issues used in the development of the
representations. Attention is restricted, in this section, to a presentation of the mathematical
forms of these representations, as restricted by consideration of superposed rigid body mo-
tions. The additional restrictions due to considerations of material symmetry are presented
in later sections.

6.1. Rate and Differential Type Constitutive Equations

One class of constitutive equations generalizes (2.16) to a relation between the stress and its
first “n” time derivatives and the deformation gradient and its first “m” time derivatives, all
evaluated at the current time ¢,

2 n F 2F mE
[ de d’c d_c' dF d d_}:{}’ ©.1)

65 . 9 .o 2 te ki b . 2 .5 2 e 2
dr” dr? dem dr dr? dem
where R is a function of m +n + 2 arguments. When subjected to the restrictions imposed by

the considerations of superposed rigid body motions, the constitutive equation has the form
[12]

j k
R, [R/oR R [ROToR 0)] RUR | U6 R =0, 62

J
s/ §=

inwhich j =1,...,nand k = 1, ..., m. Such constitutive equations are said to be of rate
type and
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J
s/ [Rz (S)TG(S)Rz (S)] st (6.3)
is called the jth invariant stress rate.

Equation (6.2) can be solved, in concept, for the stress in terms of the deformation history
or for the deformation in terms of the stress history. It contains, in effect, both the dual
constitutive equations and their inverses. As in the case of (2.16), (6.2) must be supplemented
by a set of conditions relating the stress and kinematical variables at a jump discontinuity.
These do not appear to have been developed.

A special case of (6.2) is explicit in the stress and does not depend on the stress rates,

6 = RW {U, R’ {%U,(s)} R} R’. (6.4)

This constitutive equation is said to be of differential type. It is assumed to be useful when
the stress depends on F(s) for values of s near the current time ¢, i.e. on the recent past. F(s)
can then be approximated by the first n terms of its power series.

6.2. Green—Rivlin Multiple Integral Constitutive Equations

Consider the Green—St. Venant strain tensor defined by
1
E(s) = > (Cs)—-1). (6.5)

Note by (3.8) that E(s) = 0, s € (—00,0). Let E(s) be introduced into (5.6), which then
becomes

o(1) =F1)Gi [E(t — 5|32, F(1)". (6.6)
Green and Rivlin [14] assumed that the response functional G, is continuous in E(s) in a
sense described in [5]. By expressing E(s), s € [0, #] as a Fourier series and then using

the Stone—Weierstrass theorem, Green and Rivlin obtained a representation for (6.6) as a
multiple integral series,

G [E(t — 5)I%y] = / K, (t — s,)dE(s,)
+ / i / Kalt =51, = 52) () dE(s)

+ / / / Ks(t = 51,1 = 55,1 — 53)dE(s1)dE(s2)dE(s3) +--- . (6.7)

This is written in the same form as in (2.9), i.e. in terms of Stieltjes convolutions, in order to
account for a jump discontinuity in E(s). K (r —s;), Ko (f —s1, t —52), K3(t —51, t — 52, t —53)
are tensor-valued functions of order four, six and eight, respectively.
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The dual assumption can also be made. As discussed in Lockett [2], it has the form

E0) =7 | (F6)s@F6)7)|,_| . 6.8)

J1 has a multiple integral series representation analogous to (6.7) with E(s) replaced by
F(s)~'6(s)F(s)~T. In applications, only the truncation of (6.7) or the series representation of
(6.8) up to triple integrals has been considered.

6.3. Finite Linear Viscoelasticity

Coleman and Noll [15] developed a constitutive equation based on the assumption of fading
memory, i.e. the current stress depends more on recent deformations than past deformations.
They also assumed that deformation of the current configuration with respect to the reference
configuration is large, and that the deformation of recent configurations relative to the current
configuration changes slowly, in a sense made precise in [15]. This led to Taylor series—like
approximations to (5.5) and (5.6), the leading terms of which are

o(t) = R() {k1 [C()]

+ / K, [C(1),t —s] [R()" (C,(s) =D R(t)] ds} R(t)" (6.9)
and

o(1) = F(1) {kz [C(1)]

+ / | K[C), 1 - 51 [FO)T (C(5) = D] ds}F(r)T. (6.9,)

The integrands in (6.9, ») are linear in the tensors R(¢)” (C;(s) — I) R(¢) and F(¢)" (C,(s) —
DF(z). K, and K, are fourth-order tensor functions of “s” and C(¢) and have the property,
made precise in [15], that they monotonically decay to zero as s increases. Dependence on
the finite strain tensor C(¢) expresses the notion that deformation of the current configuration
with respect to the reference configuration can be large. The linear dependence of the inte-
grand on C,(s) — I arises from the assumption that the deformation occurs slowly.

If the material is assumed to be incompressible, then the assumption of fading memory
imposed on (6.9, ,) leads to

o(r) = —pI+R() {kl [C(»)]

+ / t K, [C(t), 1 — 5] [R()" (C,(s) = DR()] ds} R(1)" (6.10))
0
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and

o(1) = —pI+F() {kz [C(»)]

+ /t Ky [C(r),t —s] [F(t)" (C,(s) =D F(1)] ds} F(r)'. (6.10,)
0

When there is no deformation, then x(¢) = X, ¢ > 0. All of the tensorial variables
appearing in (6.9 ») reduce to I and the stress reduces to 6(t) = k;(I) or 6(r) = ko(I). It is
assumed that the material is stress free in its reference configuration so that k;(I) = k,(I) =
0.

The dual form of this constitutive equation in which the deformation is expressed in
terms of the stress history has not been considered.

6.4. Pipkin—Rogers Constitutive Theory

Pipkin and Rogers [16] developed a constitutive theory for nonlinear viscoelastic solids based
on a set of assumptions about the response to step strain histories. The response functional G
in (5.6) has the form of a series in which the first term gives the best approximation to mea-
sured mechanical response using single step strain histories. The next level of approximation
uses the response to double step strain histories, and so on. The leading term of the series is

o(t) =F(1) {K3 [C(1), 0] +/0 a(%s)lg [C(s), ¢ —s]ds}F(t)T. (6.11)

If the material is assumed to be incompressible, then

6(t) = —pI+F(7) {K3 [C(t), 0] +/0 ML_S)IQ [C(s), t — 5] ds} Ft)',  (6.12)

where the motion must be such that detF(¢) = det C(s) = 1.

At a fixed value C of the strain tensor argument, Kj [C, s] is assumed to monotoni-
cally decrease with “s” to a non-zero limit. This, in effect, incorporates the notion of fading
memory into the Pipkin—Rogers constitutive theory. If the material does not deform from
its reference configuration, then (6.11) reduces to 6(r) = K5(L, ¢). It is assumed that the
material is stress free and hence K5(I, t) = 0.

Pipkin and Rogers discussed the dual to (6.11). Although the dual formulation gives an
expression that is convenient for modeling the results of creep experiments, it is less conve-
nient in applications where (4.3) must be satisfied. Consequently, only (6.11) and (6.12) are
considered here.
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6.5. Quasi-Linear Viscoelasticity

The special case of (6.11) or (6.12) when Kj; [C, 5] is separable, i.e.
K;[C,s] =K@ [C]G(s) (6.13)

has become known as quasi-linear viscoelasticity. K© [C] is normalized so that G(0) = 1.
Then, (6.12) becomes

0G(t —s)

o(1) = —pI+F(t){K(e) [CO)] + /0 KOO 50—

ds} F(t)". (6.14)

The terminology “quasi-linear viscoelasticity” arises because K [C] can be thought of as
a nonlinear measure of strain. The expression in braces in (6.14) is linear in this nonlinear
strain measure.

This constitutive equation, proposed by Fung [17], is used to represent the mechanical
response of a variety of biological tissues. It is also convenient for developing analytical
results that illustrate qualitative features of nonlinear viscoelastic behavior that could be
expected when using more complicated constitutive equations.

7. MATERIAL SYMMETRY RESTRICTIONS ON THE PROPOSED CONSTITU-
TIVE EQUATIONS

The forms for the constitutive equations presented in Section 6 reduce the problem of finding
material symmetry restrictions on the response functional G in (5.6) to that of finding mate-
rial symmetry restrictions on the tensor valued functions in (6.2), (6.4), (6.7), (6.9, ), (6.10)
or (6.11). Each of these is a tensor valued function of a set of tensors M;,i = 1,2,--- , N,
that is, of the form ®@(M;, M,, ..., My). The material symmetry condition (5.9) imposed
on the functions @ has the form

HO®M,, M,, ..., My)H’ = ®HM,H’, HM,H’, ..., HMH"). (7.1)

The method for determining the form of ®(M;, M, - - - , My) satisfying (7.1) has been
presented in the review article by Spencer [18]. It is shown in [18] that for each type of
material symmetry,

1. there is a set of basic scalar functions I, (M, M,, ..., My), k = 1,..., K, called in-
variants, that have the property

I M|,M,,....,My) = I (HMlHT, HM,H', ..., HMNHT) (7.2)

for each transformation H of the material symmetry group under consideration,

2. there is a set of basic tensor valued functions, P,,(M;,M,, --- ,My),m =1, --- , M that
satisfy (7.1) for each transformation H of the material symmetry group under considera-
tion.
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3. A function ®(M;, M, ..., My) that satisfies (7.1) can be represented in the form
M
®=> o,P,, (7.3)

where @,, is a scalar function of the basic scalar invariants, i.e. ®,, = ®,, (I, ..., Iy). It
is straightforward to show that (7.3) satisfies (7.1).

The representation (7.3) shows that material symmetry restrictions determine the basic
functions P,,(M;, M,, ..., My) and hence the general tensorial structure of ®(M;, M, .. .,
MN) Material symmetry restrictions also determine the arguments of the scalar coefficients

®,,, but provide no information as to how ®,, depends on these arguments.

8. CONSTITUTIVE EQUATIONS FOR ISOTROPIC MATERIALS

The constitutive theories in Section 6 involve only second order tensors. In this case, there is
no distinction between proper or full isotropy because (5.9) is identically satisfied by central
reflection transformations. The following presents the forms of the constitutive equations in
Section 6 when the material is isotropic.

8.1. Rate and Differential Type Constitutive Equations

The rate type constitutive equation in (6.2) becomes

RZ 5(1); ((25); (:lf) A]nAZ;"' 5Am9B :0 (81)

The tensors A, known as Rivlin—Ericksen tensors [19], are defined recursively by

DA
Ay=L+L), Ay =2

+ AL 4+ L7A,, (8.2)

where L was introduced in (3.9). (gs) is defined recursively by

(n)
0 n D (o) n n
O=0 U&= — OL+L’G. (8.3)

'R, is an isotropic function of its arguments whose general form can be constructed by iden-
tifying it with @ in Section 7. The general form is not presented here because rate type
constitutive equations are rarely used in the description of viscoelastic solids, although they
are used for viscoelastic fluids. They are not discussed further in this article.

The constitutive equation (6.4) for isotropic materials of differential type becomes
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6="R;3[A, A, - ,A,;B], (8.4)

where R; is an isotropic function of it arguments. Materials modeled by (8.4) are referred to
as Rivlin—Ericksen materials [19]. A general form for R; can be constructed by identifying
it with @ in Section 7. This constitutive equation has been used to study limited aspects of
the mechanics of viscoelastic solid. It will not receive further discussion.

8.2. Green—Rivlin Multiple Integral Constitutive Equations

The form of each integrand in (6.7) can be constructed by identifying it with ® in Section 7.
For isotropic materials, the Green—Rivlin constitutive equation (6.7) becomes (see [2])

t

G [E(r —9)I3%] = / (v T+ w,M, |

—00

t t
+ / / My T + Ty, Tia + wsTiM, + w M M, |
—00 J —00

t t t
+ / / / My ;T3 + Ly T Tos + wo ' ToM;

+ l//10T12M3 + l//11T1M2M3 + W12M1M2M3] + - (85)

where vy = Wi(t - Sl)’i = 1527 vy = l//i(t — 8,1 = S2)’i = 3545556’ vy = l//i(t -
Si,t =8t —s3),i=7,...,12, M, = dE(s,), T, = r (M), T, = tr (MaM/;) and
Taﬂy =1tr (MaMﬂMy).

This constitutive theory received a great deal of attention when first proposed. An ex-
tensive discussion of experimental and analytical work based on this theory is provided in
the book by Findley et al. [1]. Most of the experimental work makes use of the dual form
(6.8) because it is experimentally more feasible to apply step stresses and measure creep.
There is little current interest in the model for several reasons. The triple integral trunca-
tion of (8.5) is adequate for strains of about 0.1. However, larger strains require integrals of
higher multiplicity. This rapidly increases the number of experiments and functions of time
to be measured and the cost of the numerical evaluation of the integrals. This theory will not
receive further discussion in later sections.

8.3. Finite Linear Viscoelasticity

When the material is isotropic, (6.9, ) can be put in the form of (5.13),

o() = k[B(H)] + / K[B(), 1 — s](C.(s) — I) ds, (8.6)
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in which the forms of k and K are found using the results of Section 7. K [B, s] has the
property that it monotonically decreases with “s” to zero for fixed B. In order to discuss the
response to step changes in deformation, it is usually written in the alternate form obtained
by integrating by parts,

dC, (s
s =kBO1+ [ R, -51 2 as 57)
The form of K is
k = ool 4+ o B + a,B’. (8.8)
The scalar coefficients a; are functions of the invariants /, (B) of B(¢) defined by
1
I;(B) =tr(B), L(B)= 3 [tr(B)2 — tr(Bz)] , L3(B) = det(B). (8.9)

The properties of K [B, s] are similar to those of K [B, s]. The integrand of (8.7) is given

K[B(), 1 — 5] —~ C’(s) Z¢ (1 — ){BadC (s) L 4CO) }

ds ds
2 < dc, (s)
+ )Y ¢yt — 9Bt [Bﬁ#} . (8.10)
a=0 =0

The scalar coefficients ¢, and ¢, 4 are functions of  — s and the invariants /, (B).
If the material is assumed to be incompressible and isotropic, (8.6) and (8.7) are replaced,
respectively, by

o(z):—p1+f<[B(z)]+/ K[B(t),t —s](C,(s) — ) ds (8.11)
0

or

r(s)

6(t) = —pl+k B(t)]—|—/ K[B(), — s] (8.12)

k [B(¢)] and k [B(z)] have the same form as in (8.8). However, since /3(B) = 1, the scalar
coefficients a; now depend only on /,(B) and /,(B).

Lianis and co-workers carried out an extensive experimental program to determine k
and K for a styrene-butadiene rubber. The result of their program, summarized in [20], is the
following specific form of (8.12),
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o(r) = —pl+ {a + +Lilce+d(L— 3)]} B(1) — [c +d (I, — 3)]B(+)?

(I, —2)?

+2/_ [ (¢ —5) + (I, — 3) D, (t — 5)] dcs(s)

o0

! ¢1 ( ) dC,(S) dC,(S)
+/_m [fm -9+ 8l } [ 0 B(r)} (8.13)

In (8.13), I; and I, are the invariants of B, a, b, ¢, d are constants and ¢, (t), @,(¢), ¢,(1),
¢,(r) are monotonically decreasing functions of time. Table I of [20] lists values for these
functions at a set of times, as well as for a, b, c, d.

It is interesting to quote the comment in [20] regarding (8.13) as it provides insight into
the experimental effort required to determine a constitutive equation for a specific material:
“Arriving at ...(8.13) was a matter of trial and error, cross plotting, and curve fitting over
a wide range of uniaxial and biaxial relaxation data. The fact that this equation predicts
accurate results for other deformation histories is a matter of experimental verification.”

8.4. Pipkin—Rogers Constitutive Theory
The tensor valued function K3 [C, s] in (6.11) or (6.12) has the form
K;[C, s]1 = aol + a,C + a,C?, (8.14)
where ag, a1, a, are functions of “s” and the invariants of C,
1

I(C) =tr(C), L(C) = > [tr(C)2 — tr(C2)} , L(C) =det(C). (8.15)
For notational convenience, let I (C) denote the set (1,(C), ,(C), I5(C)). By (8.14) and the
assumed dependence of Kj; [C, s] on “s”, the scalar coefficients o, a1, @, also monotoni-

cally decrease with s to non-zero limit Values.
For an isotropic material, (6.11) can be written as

o(1) =FO)I()F (1), (8.16)
where
1) = 2o(I(C), O+ ay(1(C0)), 0)C() + (I (€C)), OC()
+ [l €. =T+ @ €E). 1 = 9)C0)

+ ar(I(C(s)), t — 5)C*(s)]ds. (8.17)
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If the material is assumed to be incompressible, then (8.16) is modified by the addition of
the term — pl, as in the case of (6.12), and I (C) now represents (/;(C), I,(C)) since defor-
mations are restricted by (5.10) to satisfy the constraint I3(C) = 1. Recalling the assumption
that the material is stress free in the reference configuration and hence K;(I, ) = 0, it fol-
lows from (8.14) that

oo (I(M),s)+a,(IX),s)+ar (I@),s) =0. (8.18)

When the material is incompressible, I (I) = (3, 3, 1) and when it is incompressible / (I) =
(3,3).

The terms outside the integral can be expressed in terms of B(¢) by use of (3.16) and
the observation that 1,(C) = I,(B), a = 1,2,3. The integrand cannot be expressed in
terms of B(¢) because it depends on C(s) for all times s € [0, z]. It is possible to express
F(1)C(s)F(¢)" in terms of B(¢) and C,(s) by use of (3.13), (3.14) and (3.18). There seems to
be no particular advantage in doing so and, therefore, it is not done here.

8.5. K-BKZ Constitutive theory

Kaye [21] and Bernstein, Kearsley and Zapas [22] proposed a constitutive equation for poly-
mer fluids of the form

C (U (), Iyt — oU (Iy, I, t —
(I, I S)Ct(s)—l _ou, b s)
611 a12

o(t) = —pI+/

—00

C,(s)} ds, (8.19)

in which U (I, I, s) is a material property that depends on time s and the scalar invariants
of the relative right Cauchy—Green strain tensor C, (s) introduced in (3.21),

L=t (C(s)™"), L=t(Cls)). (8.20)

This constitutive equation, known as the K-BKZ model, is mentioned here for several rea-
sons. It is a nonlinear single integral constitutive equation whose integrand is expressed in
terms of finite strain tensors, just as in (8.6) or (8.17). In addition, with it a number of bound-
ary value problems involving viscoelastic fluids can be approached in a manner similar to
problems involving viscoelastic solids.

9. CONSTITUTIVE EQUATIONS FOR TRANSVERSELY ISOTROPIC AND
ORTHOTROPIC MATERIALS

For many materials, such as biological tissue, it is appropriate to use a constitutive equa-
tion for an anisotropic viscoelastic solid. The restrictions due to transverse isotropy and
orthotropy on the functions appearing in the rate and differential constitutive equations of
Section 6.1, the Green—Rivlin constitutive equation of Section 6.2 and the finite linear vis-
coelastic constitutive equation of Section 6.3 lead to very complicated expressions. It is un-
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likely that they have appeared in the literature. In the case of the Pipkin—Rogers constitutive
equation (6.11) or (6.12), the expressions are more tractable and have been discussed by
Rajagopal and Wineman [23].
TRANSVERSE ISOTROPY
For a material that is transversely isotropic with respect to the E; direction, the invariants are
1

[(€) = u(C), L(C) = [tr(C)> — e (C?)],  I5(C) = det(C),

I,(C) = Cy, I5(C)=Ch+Cx. ©.1)
Let 7(C) denote the set (I;(C), - - - , I5(C)). (6.11) becomes
6(1) = F(1) {o; (1(C@), 0L+ a2 (1 (C(2), 0) [1; (C(1)) I — C(1)] + a3(1 (C(1), O)E; Q@ E5

+ as(I(C#),0) [Cs(t) (E1QE; +E; ®E ) + Ci5(t) (E2 @ E; + E; ® Ey)]

+ /0’ _ (t(?_ 3 [o,(I(C(s)), t —$)I + ar(I(C(s)), t —s) (I, (C(s)) I — C(s))
+ a3(I(C(s), 1 = 9)Bs ® By + as(1(C(s), 1 = 9)[Cis(s) (B1 ® Es + Es @ Ey)
+ Ca(s) (B2 ® B3 + E; ® E,)]1ds}F(r)" ©9.2)

ORTHOTROPY

For a material that is orthotropic, the invariants are
I(C) = Ci, L(C)=Cn, L(C)=Csy,
L(C) = C},, I5(C)=Cyx, I4(C)=C3,. 9.3)
Let 7 (C) denote the set (I;(C), - - - , I4(C)). (6.11) becomes
o(t) = F(1) {a1(1(C),0) E; ® E; + a2(1(C), 0)E> ® E; + a3(1(C), 0)E; ® Es
+ 2a4(1(C),0)C12 (E; @ E2 + E; ® Ez) +205(1(C), 0)Co3 (E2 ® E3 + E; ® Es)

+ 206(1(C),0)C3; (E; QE; + Es QE))

" /0 o (ta— 5 [0 C€6). 1 = DB @ B + (I (€(5)). 1 = )Ex @ Er
4+ a3(I(C(s)),t — $)E3s Q Ez + 2a4(I(C(s)),t —s)Cp2(s) (E, QE; + E; Q Ey)
+ 205(I(C(s)),t — 5)Cxs(s) (E; @ E; + E; ® E,)

+ 2a5(1(C(s)),t — 5)C31(s) (E; ® E; + E; ® E))ds}F(r)". 9.4)
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10. DEPENDENCE OF STRESS RELAXATION ON TEMPERATURE AND
STRAIN—THE CLOCK CONCEPT

Material symmetry restrictions lead to explicit expressions for the tensorial structure of the
constitutive equations, that is, it shows how the stress tensor is expressed in terms of the
deformation tensor. This section is concerned with factors that influence the time dependence
of response.

It is well established that stress relaxation is affected by temperature [6, Chapter 11].
This effect is accounted for by introducing a new time variable £, called the material time,
intrinsic time or reduced time. It arises from the notion that during stress relaxation, the
macromolecular structure goes through a sequence of reconfigurations. ¢ represents the time
during this sequence as seen by the material and differs from the laboratory time #. That is,
the material follows its own “clock” for stress relaxation that can run faster or slower than
the laboratory clock.

The increment of material time d¢ is related to the increment of laboratory time dt by

dr

C=TT0.T)

(10.1)

in which T, is a reference temperature, 7 (¢) is the current temperature, and a (7'(¢), T,)
is a material property called the time-temperature shift function. a (T (¢t), T,) > 0, thereby
ensuring that d¢ > 0. When T'(¢) > T,,a (T (¢t), T,) < 1 and d¢/dt > 1 so that the material
time increment is larger than the laboratory time increment (the material clock moves faster).
When T(t) < T,,a(T(t),T,) > 1 and d¢/dt < 1. The material time increment is now
smaller than the laboratory time increment (the material clock moves slower). The current
material time ¢ is related to the current laboratory time by

! dx
0 :/o G 1)) (102

a relation often referred to as defining a “temperature” clock.

There has been recent experimental evidence that the time dependence of response is
also affected by strain. This has led to the notion of a “strain” clock, whose definition is
analogous to the “temperature” clock,

s [t dx
g(t)—/o TR (10.3)

Knauss and Emri [24] and Shay and Caruthers [25], based on considerations from polymer
science, assumed that a (C(x)) depends on the volumetric strain. McKenna and Zapas [26]
interpreted results on torsion of PMMA as indicating that a (C(x)) should depend on shear
stain. Experiments by Liechti and Popelar [27] led them to express a (C(x)) in terms of both
volumetric and shear strains. Recently, Caruthers et al. [28] proposed a constitutive theory
that expresses a (C(x)) in terms of the “configurational energy” of the molecular structure.
This led to an expression for the a (C(x)) in terms of the history of C(z), z € [0, x]. The
“strain” clock concept is a subject of ongoing research.
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The clock is introduced in to the constitutive equation by replacing the constitutive as-
sumption (5.1) with

o(t) = F [F(E(t) — ()] - (10.4)

The restrictions due to superposed rigid body motions and material symmetry can be imposed
on constitutive equations of the form (10.4). The dependence of a (C(x)) on C arises from
the former restriction. The latter restriction implies that a (C(x)) depends on the appropriate
invariants of C. The Green-Rivlin, finite linear viscoelasticity and Pipkin—Rogers models
can still be obtained by appropriate assumptions, but with the argument ¢ — s replaced by
&(t) — &(s). These expressions are not given here for the sake of brevity.

11. VOLTERRA INTEGRAL EQUATIONS

The remainder of this article is devoted to examples using the constitutive equations for
isotropic materials given by finite linear viscoelasticity and the Pipkin—Rogers theories, both
referred to as nonlinear single integral constitutive equations. As will be seen in later sections,
their application to boundary value problems leads to equations of the form

f(r) = @, (x(¢)) +/0 D, (x(1), x(s),t —s)ds, (11.1)

where f(¢) is a known vector-valued function of ¢ and x(¢) is an unknown function of ¢. ®,
and @, are known vector valued functions of their arguments. Equation (11.1) is said to be a
Volterra integral equation for x(¢) given f(z).

The special case of linear Volterra integral equations occurs when @, and ®, are linear
in x(¢) and x(s). Such equations have already been encountered in the discussions following
(2.18) an (2.25). Issues such as existence and uniqueness of solutions and analytical meth-
ods for finding them are discussed in [29] and [30]. Linear Volterra integral equations of the
type that occur in linear viscoelasticity can generally be solved by analytical methods such
as successive approximations or the Laplace transform. However, very few, if any, analytical
methods have been developed for nonlinear Volterra integral equations, even those that occur
in nonlinear viscoelasticity. Even so, in the case of linear Volterra integral equations, analyt-
ical methods lead to expressions for the solution that require substantial numerical effort
to evaluate. Because of this, the most useful method of solving Volterra integral equations,
whether linear or nonlinear, is numerical. This was shown to be the case in linear viscoelas-
ticity in by Lee and Rogers [31, 32] and Lee et al. [33]. This is also the case for nonlinear
viscoelasticity, as will be discussed in Section 18.

For this reason, the remainder of his section is devoted to the description of a numerical
method of solution of (11.1). There are other reasons why a numerical method of solution is
presented here. First, an analytical solution, if available, would provide a formula for x(z).
One might see the x(¢) curve as a single entity and miss the visual sense of the solution
evolving as time increases, i.e., the sense of seeing the solution evolve as if produced by
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a cursor moving across a computer screen. The method of numerical solution helps one to
visualize this evolution. The second reason for presenting a numerical method of solution is
that it will be useful when discussing applications in later sections.

Equation (11.1) is to be satisfied at a discrete set of times denoted by #,,n = 1, ..., ‘Hyax,
with t; = 0. For notational convenience, let f(;) = f; and x(#;) = x;. Then, (11.1) can be
restated as

th
£, = ® (x,)+ / ®, (x,.X(5). 1, — 5) ds. (112)
A

When n = 1, (11.2) reduces to
f] =(I)1 (Xl)a (]13)

a nonlinear equation for x;. There are many methods for solving such equations. Assuming
that x; has been found, (11.2) must now be satisfied at time f,. Thus, consider

15)
f, =@, (Xz) + / D, (x5, X(5), 1, — s)ds. (11.4)
141
Let the integral be approximated using the trapezoidal rule,

1
£ =@ (x2) + 2 (ta — 1)) [@ (x2, X2, 0) + D3 (X2, X1, 1r — 1)]. (11.5)

Since x; has been found, (11.5) is a nonlinear equation for x,. Next, let n > 2 and assume
that solutions x;,i = 1, ..., n — 1 have been found. At time #,, (11.2) can be written as

i=n—1

tiq1
=0 x)+ Y / ®, (x,.X(5). 1, — 5) ds. (11.6)
i=1 Y

As before, each integral in (11.6) is approximated using the trapezoidal rule,

i=n—1

1
£, =@ (%) + D 5 (e = 6) [ @2 (%0 X, o = i) + @2 (%0, X 1y —1)] . (117)
i=1

This gives a nonlinear equation for x,,. One continues in this manner, producing the solution
at each time ¢, as time marches forward until n = n,,.

The basic numerical method outlined here can be refined in many ways. For details, see
[29] or [31].
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12. HOMOGENEOUS DEFORMATIONS—STEP CHANGE HISTORIES

Let a nonlinear viscoelastic solid undergo a homogeneous deformation in which there is
a step change from the reference configuration to fixed deformed configuration. This is a
special case of the motion (3.1) and is described by

x(s) = X, se€(—00,0)
x(s) = F,X, s¢€]0,¢], (12.1)
where F, is constant. By (3.8), the deformation gradient history is
F(@s) =1, se€(—00,0)
F(s) =F,, sel0,1]. (12.2)
Then, by (3.15),
Cis) =1 se€(—00,0)
C(s) = FJF,,
=C, sel0,1], (12.3)
and by (3.16)
B(t) = F,F! =B,. (12.4)
The relative stretch history is found from (3.17) and (12.2),
F,(s) = F(s)F(0)™'
=F', se(-00,0)
=1L s5e[0,1]. (12.5)
Then, using (3.21) and (12.4),
C.(s) = F,'F;’
=B, s5e(—00,0)

=1 se[0,1]. (12.6)
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FINITE LINEAR VISCOELASTICITY

Let C(s) = C, and the history of C,(s) from (12.6) be introduced into (6.9,),

0
o(1)=F, {kz [C,]+ / K;[C,,t —s][F] (B! =) F,] ds} F’. (12.7)

On letting x =t — s, Equation (12.7) becomes

o(r) =F, {kz [C,] + / K (€, xldx - [T (B]' — 1) Fo}}FZ. (12.8)

According to the theory of Coleman and Noll [15], K; [C,, x] decays monotonically to zero
sufficiently fast as x increases so as to ensure the convergence of the integral in (12.8). Thus,
as t — oo, the integral term decreases to zero. This discussion can be extended to the
incompressible case (6.10,) by replacing 6(¢) in (12.8) by o(¢) + pl.

Consider the constitutive equation for the isotropic material given by (8.7) and (8.10).
By (12.4), B(t) = B,. In addition, because C,(s) has the jump discontinuity indicated in
12.7),

dC;(s) _

= (I-B,")d(s), (12.9)

where J(s) denotes the Dirac delta function. The stress relaxation response is

2
o(t) = aol + B, + 0B, +2) " ¢,(t —5) [B. — B,

a=0

2 2

+ 3 ¢yt — Bt B — BT (12.10)

a=0 =0

The scalar coefficients a;, ¢, and ¢, ; are functions of the invariants 1, (B,) of B,.
This is extended to the incompressible case (6.10,) by replacing 6(¢) in (12.10) by ¢(¢)+
plL. The special case of the Lianis constitutive equation (8.13) becomes

o(t) = —pIl+ {a +2¢,(t) + b(IL%(? + 1) [c +2¢,(1) + (I, — 3) (d +2D,(1))] | B,
-
— [c+2¢,+ (I, —3) (d+29,(1))] B, (12.11)

where I} and I, are the invariants of B,. In deriving (12.11), use was made of the Cayley—
Hamilton theorem in the form

B,' =B - I,B, + LI (12.12)
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PIPKIN—ROGERS THEORY

Let the histories of F(s) in (12.2) and C(s) in (12.3) be substituted into the Pipkin—Rogers
constitutive equation (6.11),

o) =F, {K3 [C,, O] +/ LK3 [C,, 1 — 5] ds}FDT. (12.13)
0o 0@ —s)

On noting that C, is constant, letting x = ¢ — s, and then integrating by parts, one obtains
o(t) =F K5 [C,, 1]F], (12.14)

This is a deformation dependent stress relaxation function. The incompressible case (6.11) is
obtained by replacing 6(¢) in (12.14) by 6(¢) + pI. When the material is isotropic, K3 [C,, ]
is given by (8.14). Aside from the argument ¢ in the coefficients a,, a1, a, in (8.14), this
has the same form of dependence on F, and C, as in the constitutive equation for nonlinear
elasticity. The right-hand side of (12.14) can be expressed in terms of B, using (12.3) and
(12.4), but will not be done here.

Equations (12.8) and (12.10) have the form

o(t) =g (F,) + g (F,, 1), (12.15)

while (12.11) has the form
o)+ pl=g (F,) +& (F,,1). (12.16)
A comparison of (12.15) and (2.24,) shows that G, corresponds to g, (F,) and AG (¢) corre-
sponds to g, (F,, t). The terms in (12.8) corresponding to g, (F,, t) monotonically decrease
to zero as t — oo for reasons already mentioned. The terms corresponding to g (F,, r)
in (12.10) and by g, (F,, ¢) in (12.11) monotonically decrease to zero as ¢ — 00 because
¢, (I1(B,),1)and ¢, 4 (1 (B,), 1) dosoin (12.10) and ¢, (t), D, (1), ¢, (t) and ¢, (¢) do so in
(12.11). The expressions for 6(¢) in (12.8), (12.10) and (12.14) and for 6(¢) + pIin (12.11)

are therefore deformation dependent stress relaxation functions and are generalizations to
three dimensions of G (¢, &,) introduced in Section 2.2.

13. HOMOGENEOUS DEFORMATIONS—TRIAXIAL STRETCH HISTORIES

Let an isotropic nonlinear viscoelastic solid block undergo the triaxial stretch motion
xi(s) = 2i(s)X;, se€(—o0,t], 1i=1,2,3

with

M) = () =A3(s) =1, s € (—00,0). (13.1)
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Ai(s) is a stretch ratio in the X; direction. It can have a jump discontinuity at s = 0 and then
vary arbitrarily for s € [0, ¢]. By (3.8), the deformation gradient history is

F(s) =1, se€(—00,0)
F(s) = diag[41(s), 42(5), 43(s)], s €[0,1], (13.2)

from which the kinematical quantities needed for use in the constitutive equations are found
to be given by

Cis) =1 s€(—00,0)

C(s) = diag [41(s)*, 1a(s)*, 23(s)?], s €[0,1], (13.3)
B(r) = diag [1,()°, 12(1)*, 23(1)*] (13.4)
C,(s) = diag [1/2:(1)*, 1/42(t)°, 1/43(t)°] , 5 € (=00, 0)

Ci(s) = diag [(A1(s)/41(1)*, (Aa(s)/22(0))*, (23(5)/25(1))°] . s €10,1]. (13.5)

In addition,

I (C(s)) = 21(s)* + 2a(s)” + Za(s)?,

L (C(5)) = 21(5)*22(5)” + 22(5)°43(5)* + Aa(5) 2 (s),

I3 (C(5)) = Z1(5)°22(5)*A3(5)*. (13.6)
Note that I, (B(¢)) = I, (C(r)) , k = 1,2, 3. Finally,

dC, (s) _
ds

dC/(s) _ o ((AON (1N (0N (1Y
s e </11(t)) (Mr)) ’(b(z)) (b(r)) ’
25(0) 2_ 1\’

(/13(1‘)> (/13(1‘)) }5@)

dC,(s) _ dia [2 A1(s) dA;(s) 2/12(s) dAa(s) 2/13(s) dA;(s)
ds IO ds TG ds CTa0)? ds

0, se(—00,0),

} , sel0,¢].  (13.7)
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ISOTROPIC FINITE LINEAR VISCOELASTICITY

Substituting (13.4)—(13.7) into (8.7)—(8.10) gives an expression for the stress o;;(¢),

oi(t) = a, +a;4i()* +a l-(t)4+2i¢ ) | ()™ <’11(O)>2_< 1 )2
ii — Uy 144 244 yard 14 i ii(l‘) ii([)

20 Hi(8) dll(s)
s qua(r ) A

2a 2 4(0) ’ LY
+ 222%13@“ @) Z [ Ol [(zk(n) - (ik(ﬂ) ”

=0 =0
Ak(s) dAx(s)

4 t—s) () M ()P 2o T ) s, 13.8

+ /;%ﬁaﬁ( $) (1) (Z (Y e | (13.8)

For an incompressible material, o ;(¢) is replaced by ¢;;() + p and the motion is such that

A1(8)A2(s)A3(s) = 1,5 € [0, 7].
For the Lianis constitutive equation (8.13),

oi(t) = —p+ {fl + + 1 (I — 3)} Ai(t)* = [c+d (L = 3)] Ai(0)*

2:(0)\? 1 \?
(M(l)) _<m>)

Ai(s) dAi(s) ds

_b
(I —2)°

2 [, (1) + (1 = 3) @, (1)]

4 / (Bt = 5)+ (I = 3) D, (1 — )] 4a(s)
0

Ai(t)? ds
$0 T (EON (LN, e
i {MH 0 —2>2} [(im) ) (T@) }M”
(1 —s) 2i(s) dAiGs)
/ [gb (t—s )+( —2y ]/li(t)z/li(s)li(t)z P (13.9)

PIPKIN-ROGERS CONSTITUTIVE EQUATION

From (8.16),

ai(t) = 2i(t)* {ao (1 (C(1)), 0) + a1 (I (C(1)), 0) 2i(1)* + a2 (1 (C(1)) , 0) Zi(1)"

+ /Of _ ([6_ 5 [ao (I (C(5)),t—s5)+a; (I(C(s)),t—s)Ai(s)?

+ ay (I (C(s)), 1 —s) Ai(s)*1ds }, (13.10)
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in which I (C) denotes the set of invariants (13.6). For an incompressible material, o;(¢) is
replaced by ¢;;(¢) + p, the motion is such that 4, (s)4,(s)A3(s) = 1, s € [0, t] or I3 (C(s)) =
land I (C) = (1, (C), L, (C)).

In the sections to follow, analyses and discussions are presented using the Pipkin—Rogers
constitutive theory because of its convenience for developing certain results. A corresponding
treatment could also be carried using the constitutive equation for finite linear viscoelasticity,
but is not done so because of space limitations. It is important to point out that the latter
constitutive equation has been used in numerous applications that will be mentioned in due
course.

14. HOMOGENEOUS DEFORMATIONS—UNIAXIAL STRETCH HISTORIES

Uniaxial stretch is the special case of triaxial stretch when there is only one non-zero stress
component. As in other areas of solid mechanics such as elasticity and plasticity, an under-
standing of uniaxial stretch is essential to an understanding of the material. Thus, this section
contains a detailed discussion of uniaxial stretch for nonlinear viscoelasticity. Many of the
features of the uniaxial response introduced in Section 2 for linear viscoelastic response are
re-visited here.

Let the reference configuration of an isotropic nonlinear viscoelastic solid be a block
with edges along the X, X, X3 axes of a cartesian coordinate system. The block undergoes
uniaxial extension along the Xj3-axis. The motion is described by (13.1) and the stresses
are given by (13.10) with ¢1(t) = o»(t) = 0, ¢ > 0. For notational convenience, let
A3(t) = A(t) and 033(t) = o (t). Equations (13.10) become

a(t) = —=p+ay (I (C(),0) 2(1)* + oy (I (C(1)), 0) 2(1)* + 2 (1 (C()) , 0) 2(1)°
' 0 2 2 2
+ /0 FITE) [0 (1 (C(s)) 1 = $) A(1)* + o1 (1 (C(5)) , 1 — ) 2(1)*A(s)

+ ax (I (C(s)), 1 — ) A(1)*A(s)*] ds, (14.1)

0 = —p+a0 (I (C1)). 0) (1 + a1 (1 (C(1))., 0) 21 (1) + a2 (1 (C(1)), 0) 211
[ S [0 (€00 1 =5 10 01 (1 (€O 1 =) 10205

+ ay (1 (C(s)) .t — ) A1 (1)*A1(s)*] ds, (14.1,)

0 = —p+ao (1 C1)).0) () + 0y (1 (C1)).0) 2a(t)* + 0tz (1 (C1)). 0) 2a1)®
+ /O l ﬁ (oo (1 (C(5)) 1 = 8) 2217 + s (1 (C(s)) 1 = ) ()2 22(5)°

+ ar (I (C(5)) 1 = 5) A2(1)*22(s)"] ds. (14.13)
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It is intended that (14.1,,3) apply to both compressible and incompressible materials in a
single expression. When the material is compressible, p = 0 and when it is incompressible
Equations (14.1, 5 3) are supplemented by the condition 1;(s)4,(s)43(s) = 1, s € [0, ].

Suppose that the material is compressible. If the history A;(s) = A(s),s € [0,¢] is
specified, then (14.1, ;) become a system of nonlinear Volterra integral equations for 1, (s)
and A,(s), s € [0, z]. Once these are known, (14.1;) is used to determine o (¢), r > 0. If the
stress history, o (t), > 0, is specified, (14.1;.3) becomes a system of nonlinear Volterra
integral equations for 4;(s), 4,(s), 43(s), s € [0, z].

Suppose that the material is incompressible. If the history A3(s) = A(s),s € [0, ] is
specified, then (14.1; 3) along with 4,(s)4,(s)43(s) = 1, s € [0, t] become a system of non-
linear Volterra integral equations for p, 4;(s) and 4,(s), s € [0, ¢]. Once these are known,
(14.1,) is used to determine o (t),t > 0. If the stress history, o (¢),t > 0, is specified,
(14.1, 23) along with 4,(s)22(s)A3(s) = 1, s € [0, ¢] becomes a system of nonlinear Volterra
integral equations for p, 41(s), 42(s), 23(s), s € [0, ¢]. These can be solved using the numer-
ical method outlined in Section 11.

14.1. Determination of A1(s) and A5(s), s € [0, t].

For both compressible and incompressible materials, subtraction of (14.1,) and (14.15) gives

0= (L)’ = 21(1)?) [0 (1 (C(1), 0) + a1 (1 (C(1)), 0) (22(1)* + 21 (1)°)

+ o (1 (C(1)),0) (A0 + 42?41 (1)* + 41 (1)*)]
n /O ﬁ [0 (1 (€)1 = 5) (Aot = 111)?)

+ a1 (1(C)), 1 = 5) (22(1)*2a(s)* = 21(1)*21(5)?)

+ a (1 (C(9)) 1 =) (22(0)*2a(s)* = 21(1)*21(5)*)] ds. (14.2)

The numerical method outlined in Section 11 applied to (14.2) leads to a relation between
A1(s) and A, (s). Let t = t; = 0. The integral becomes zero and (14.2) reduces to

0 = (22(t)* = 21(1)?) [ (I (C(11) , 11) + a1 (I (C(1r) , 1y) (Aa(tr)” + 21(11)?)

+ ay (I (C(1)) , 11) (A2(t)* + A2 (01)* 20 (1) + 21 (1)*)] (14.3)

It is assumed that the expression in square brackets is not zero. Then the only physically
meaningful solution to (14.3) is A2(#;)* = 4;(¢;)%. Next, evaluate (14.2) at t = t,, introduce
the notation da;(t —s)/0(t —s) = a;(t —s) and approximate the integral using the trapezoidal
rule as was done to get (11.5) from (11.4). Since 1,(t;)> = 4,(#;)?, (14.2) reduces to

0 = (A(r)’ = 1i(12)?) [0 (I (C(12)) . 11) + a1 (I (C(12)) , 11) (Aa(t2)® + A1 (1))

+ ay (I (C(1)) s 11) (A2(82)* + A2(82)° 21 (22)* + 21 (1)) ]
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+ % (o — 1) {[60 (I (C(12)) . 11) + éo (I (C (1)), 12 — 11)] (Aa(12)* = 24(12)°)

+ [a1 (I (C(R)) . 1) (22(02)* + 41(22)*) + &1 (I (C (1)) . 12 — 11) A1 (11)°]
x (M)’ = M(R)?) + [a2 (I (C(12)) , 1) (A2()* + 22(02)* A1 (82)” + A1 (12)")

+ ar (1 (C(h)) . — 1) 2(1)*] (2(22)” — A1 (12)?) ). (14.4)

Since each term in (14.4) has the factor 1,(t,)*> — 4(t,)?, this equation admits the solution
A2(ty)? = A1(t2)% Tt is assumed that this is the only physically meaningful solution.

Next, let (14.2) be evaluated at t = ¢, and assume that 1,(t;)> = 4, (t)*, k=1,2,...,n—
1. Approximating (14.2) by use of the trapezoidal rule as was done to get (11.7) from (11.6)
gives

0 = (Z2(ta)” = 21(1)°) [a0 (I (C(1)) s 11) + a1 (I (C (1)), 1) (A2(t)” + 21 (1)7)

+ o (1 (C(1)) s 1) (Aa(tn)* + A2 (1)’ 21(8)* + A1 (80)*) ]

i=n—-2
# 3 5 r = 0 o U (Cl) s = 1) + 0 U €ty =)
X (Aa(ta)* = 21(8)?) + [0 (I (C(6i11)) 5 tn = Fig1) A1 (fi1)°
+ a1 (1 (C®)) 1 — 1) A (1) (Aa(1)* = 41(1)?)

+ [dz (I (C(ti11)) s tw = fig1) A1 (1)t + a2 (I (C(®)) 5 10 — 1) il(fi)ﬂ
x (1200 = 24(6)?)) 4 5 0 = 1) (o (1 (C(0)) 1)

+ dO (I (C(tn—l)) > In — tn—l)] (12(@1)2 - j~1(ltn)2) + [0(1 (I (C(tn)) ’ tl)
X (}~2(ltn)2 + il(tn)z) + dl (I (C(tn—l)) s [n - [n—l) il (tn—l)z] (}~2(ltn)2 - il([n)z)
+ [0'(2 (1 (C(tn)) ’ tl) (iz(ln)A + AZ(In)z/ll ([n)2 + 4 (tn)4)

+ a2 (I (C(ta=1)) s ty = tu=1) 21 (ta=)*T (A2(8:)* = 241(2)°) ). (14.5)

Since each term in (14.5) has the factor A,(,)* — 4;(z,)?, this equation admits the solution
Jn(t,)? = A1(t,)*. As before, it is assumed that this is the only physically meaningful so-
lution. This solution holds as ¢, increases, that is, as time marches forward. In the limit as
the number of time steps increases and the time increments decrease, the approximation to
(14.2) is expected to approach the exact equation. Thus, the numerical solution implies that
Jr(s)> = A,(s)%, s € [0, t].

The invariants in (13.6) reduce to
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I (C(5)) = 241(s)” + A(s)*,
L (C(s)) = 2i(s)" +241(5)A(s)°,
I (C(5)) = Ai(s)*2(s)™. (14.6)

When the material is compressible, (14.1,) and (14.1,), with p = 0 give a system of non-
linear Volterra integral equations that relate A(s), 1,(s) and o(s). When the material is

incompressible, one finds from the result 1,(s)> = 4,(s)%, s € [0, ] and the condition
A1($)Aa(s)253(s) = 1, s € [0, ] that
Ji(s) =), sel0,1]. (14.7)

The invariants (14.6) reduce further to

1
A(s)?

1 (C(s)) = A(s)? + %s) 1 (C(5)) = 2A(s) + (14.8)

The scalar p is found from (14.1,). Eliminating p between (14.1,) and (14.1,) gives

1
+ a2 (1 (C()),0) <W)4 Tt myﬂ

t P 2 1
+ /O =) {ao (I (C(s)),t—5) (,1(;) _ m)

+ a1 (I (C(s)),1 =) (/1(t)2/1(S)2 -

1
/W)MS))
x ay (I (C(s)),t—s) </1(t)2/1(s)4 — m)} ds, (14.9)

the stress—stretch relation for an isotropic, incompressible nonlinear viscoelastic solid. This
equation is the focus of the remainder of this section.

14.2. Small Strain Limit

Equation (14.9) can be expressed in terms of the strain by substituting the relation A(s) =
1 + &(s). Assume that ¢,, = max |e(s)]|, s € [0, ¢], is small and expand the right hand side in
a Taylor series in &(s). The approximation to (14.9) including terms through o (8,3,1) is

LdG(1 — 'dG(1 —
o(t) = e(t)G(O)—i—/O ﬁe(s)ds+e(t) [e(t)G(O)+/O He(s)ds
+ e(t)zé(0)+/l %_S;)s(s)zds. (14.10)
T
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In deriving (14.10), a;(3, 3, t) denotes a;(I (C),t) when the values of the invariants are
I, (C) = I, (C) = 3 and use has been made of (8.18). Then

G(t) =301(3,3,1) + 6a>(3,3,1), G(1) =30,(3,3,1), (14.11)

Thus, when ¢,, << 1 and only first order terms are retained, (14.10) reduces to the constitu-
tive equation for linear viscoelasticity (2.15).
14.3. Stress Relaxation

Let A(s) = 4, # 1, s € [0, ¢]. By (14.8),
IH(C(s) = 22 +2/20, D (C(s)) =22, + 1/22. (14.12)

Introducing the notation, &; (4,,5) = a; (I (C(s)),s) when the invariants are given by
(14.12), (14.9) reduces to

~ 1 - 1 _ 1
o (t) = o (Lo, 1) </13 - 7) + 61 (Ao, 1) (li - ?> + a2 (Ao, 1) </13 —~ F)

= G(t, ), (14.13)

a stretch dependent stress relaxation function for uniaxial extension. Setting 4, = 1 + ¢, in
(14.14) gives G (t, &,) introduced in Section 2.2.
Various forms for G (t, 1,) have appeared in the literature:

1. A simple separation of variables product form as in the quasi-linear viscoelastic constitu-
tive equation (6.13),

G (1,2,) = [O(L)G(1). (14.14)
2. A summation of product terms as in the Lianis constitutive equation (12.11),

N
G(t,h0) = fi(h) Gi(0). (14.15)

k=1

3. A decomposition such as (2.24,) with a stretch dependent characteristic time,

G (1, 20) = Goo (20) + 1[Gy (20) = Goo (1)1 G [t/7 (A,)] - (14.16)

14.4. Creep

Consider the step stress history ¢ (t) = o,, where o, is a constant. Let the creep response to
this step stress history be denoted by J (¢, o,), the creep function introduced in Section 2.1.
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This is found by solving the nonlinear Volterra integral equation (14.9), the counterpart here
of (2.18,).

Few analytical methods appear to be available for solving nonlinear Volterra integral
equation or for gaining information about the solution. When possible, it is usually necessary
to assume the form of the nonlinearity. Owing to the general nonlinear dependence of (14.9)
on A(s) and the fact that there are many possible forms for the material property functions, it
does not seem likely that an analytical solution for J (¢, o,) can be found. Instead, J (¢, 5,)
will have to be determined numerically using the method described in Section 11.

It is possible, in linear viscoelasticity, to derive analytical relations (2.19) and (2.20) be-
tween the creep and stress relaxation properties from (2.18;) or (2.18,). It does not seem pos-
sible to derive corresponding relations between J (¢, o,) and the material properties in (14.9).
It is expected, based on linear viscoelasticity, that if the scalar coefficient a;(#) monotoni-
cally decreases to a non-zero limit as t — oo, then J (¢, o,) will monotonically increase to
a finite limit J (oo, 7).

14.5. Isochrones

It has been shown that the nonlinear viscoelastic response given by (14.9) approaches linear
viscoelastic response given by (2.15;) as the magnitude of the maximum strain decreases.
This implies that the stress relaxation and creep isochrones approach straight lines through
the origin as the maximum strain or stress decreases. This has been demonstrated for both
stress relaxation and creep isochrones by Smart and Williams [34].

14.6. Constant Stretch Rate Histories

The stretch history A(s) = 1 + as, s € [0, t], where a is a constant stretch rate, plays an
important role in experimental programs for determining the constitutive equation for nonlin-
ear viscoelastic materials. The stress history calculated from (14.9) can have a complicated
dependence on the stretch rate o and time.

Useful insight into the deviation from linear response can be gained by considering
stretch rates and initial time intervals when the strain ¢(s) = as is small. In this case, the
stress is found by substituting £(s) = as into (14.10),

oct)=a /Ol G(s)ds + o’ [z‘ /Ot G(s)ds + 2/()[ G(s) (t—5) ds} . (14.17)

When &(s) = as is infinitesimal, the stress is given by the first term in (14.17), which is the
linear viscoelastic response (2.26). A plot of ¢ /o vs. t is independent of a. When ¢(s) = as
increases so that the quadratic terms in (14.17) become important, the plot of o /o vs. ¢
becomes dependent on a. The point at which this occurs indicates the onset of nonlinear
response.

Another point of view is obtained by calculating do /d¢ from (14.17),

do (1)
dr

=aG(t) +a’ [/l G(s)ds +1G(t) + 2/t G(s)ds] . (14.18)
0 0
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As discussed in Section 2.9, linear viscoelastic response is given by the term in (14.18) that
is linear in a. The slope of the plot of ¢ vs. ¢ plot monotonically decreases in this regime.
Now, consider the influence of the a* term on the slope. The first term in the square bracket
monotonically increases with time. The second term initially increases due to the factor ¢, but
may then decrease due to the factor G (¢). The behavior of the third term depends on é(t),
about which little is known. As the a? term becomes important, the slope of the plot of ¢ vs.
¢t may begin to increase. The point at which the slope deviates from a monotonic decrease is
another indication of the onset of nonlinear response.

Constant stress rate histories were discussed for linear viscoelastic response in Sec-
tion 2.9. Results were developed using the inverse form of the constitutive equation and
expressed in terms of the creep compliance. Since (14.9) does not have a simple inverse, the
response to a constant stress rate history must be found by solving the nonlinear Volterra
integral equation obtained by setting ¢ (1) = ft in (14.9).

14.7. Sinusoidal Oscillations About the Reference state

Let the block be subjected to the sinusoidal stretch history A(s) = 1 + ¢, sinws, s € [0, t].
When this stretch history is substituted into (14.9), it is assumed that the stress reaches a state
of steady oscillations. The mathematical issues in showing this are not discussed here. When
le,| << 1, the response is linear and is given by (2.31,). When |g,| is larger, the nonlinear
dependence of (14.9) on A(s) causes the ¢ vs. ¢ plot to be periodic but not sinusoidal. It is
interesting to study the change in the o vs. t plot as |g,| increases.

To this end, let the strain history ¢(s) = ¢, sin ws be substituted into (14.10). The stress
becomes

o(t) = &, |G'(w) sinowt + G (w) cos wr|

2

+ % [G’(w) + G (00) — cos 201 (G/(co) + G’(2w))

+ sin 20 (G”(w) n 6;”(2@))} . (14.19)

Equation (14.19) shows that as the terms in &2 become larger, the stress becomes modified
by the addition of terms in sin 2wt and cos 2wt. Clearly, when |g,| increases further so that
terms in |&,|" must be included, the stress becomes further modified by the addition of terms
in sinnwt and cos nwt. Thus, an indicator of nonlinearity is the appearance of these higher
frequency terms and the associated change of the shape of the o vs. ¢ plot.

Because of the appearance of these higher frequency terms, stress and strain are no
longer related by (2.40). The stress—strain plot changes from an ellipse to some other shape
of closed curve. Both squared off and S-shaped curves have been observed in experiments.
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14.8. Small Deformation Superposed on Finite Uniaxial Stretch

Let a bar be subjected to a uniaxial stretch history described as follows: a step stretch is
applied at + = 0 and held constant until the stress has relaxed to its long time value. The
stretch then has a small perturbation. The stretch history is given by

26) =21, 1+ n(s)), sel0,1], (14.20)
where |7(s)] << 1 and

nis) =0, se [O, T*}

= (s =T, se|[T"1]. (14.21)

The stress relaxation response to the underlying step stretch history A(s) = 4,, s € [0, t], is
given by (14.13). Let time 7™ be large enough that the stress is very close to its long time
limit. The response to the perturbed stretch history is obtained by substituting (14.20) and
(14.21) into (14.9), expanding terms in Taylor series and retaining only the terms linear in
the perturbation #(s). Letting ¢t = 7 4+ T*, where ¢ denotes a time measured from T*, the
stress becomes

o (1) = G (00, 2,) + 6 (Lo} 7) (14.22)
where
& 1) = 7 (1) Kzzi + %) o (o3 00) + (2&3 + %) a1 (; )
+ (204 j) o 24509)| 1) M 0
- / (s) Mds, (14.23)
0 o (t—s)
and

M(Z,5 1)

I
S}
N
~
S N
|
&=

2
) al i 1)

1 1 1

ot zg) arldo; 1) +2 (lz - Z) <z§ - F) o3 (s 1),

with
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ou; 1 da;
a;‘(ia; )_ (/109 )+ ),_6_]2(/10’ ) (1424)

The last two terms in (14.23) have the same form as (2.15,) and hence represent a superposed
linear viscoelastic response with a stress relaxation modulus M (4,; t) that depends on the
underlying stretch 4,,.

Let the perturbation be the sinusoidal deformation

7(s) = g, sin ws. (14.25)

When time 7 becomes large, (14.23) becomes

. 1 1
6Ly 1) = &, sinwi Kzzg + 7) oo (Ao; 00) + <2zj§ + —2> a1 (Ay; 00)

A‘O

1
+ (2/12 /13> ar (Ay; oo)] + &,[M’' (Ay; @) sin f

+ M" (Jo; w) cos wt], (14.26)
with
© oM (,;
M (J,; w) = M (A,;0) —I—/ % cos wsds, (14.27))
0 s
® oM (Ay;
M’ (Dp; ) = — / ¥s1nwsds (14.27,)
0 A

This result shows the influence of the underlying stretch on the response to superposed small
amplitude vibrations. In particular, the underlying stretch affects M” (1,; ®). Thus, recalling
the discussion in Section 2.10, the underlying stretch affects the damping characteristics and
work done per cycle.

Goldberg and Lianis [35] carried out similar calculations using the constitutive equation
(8.13) as well as other models, performed experiments involving small amplitude oscillations
on finite stretch and compared the results with predictions of the models. Morman et al.
[36] and Morman and Nagtegaal [37] extended the ideas illustrated here to general small-
amplitude vibrations superposed on large deformations for the Lianis constitutive equation
(8.13) and incorporated the results in a finite element analysis.

15. HOMOGENEOUS DEFORMATIONS—BIAXIAL EXTENSION HISTORIES

Biaxial extension is the special case of (13.10) when two of the normal stresses act in a plane
and the third normal stress equals zero. If the non-zero stresses act in the X; — X, plane, then
033() =0,¢t > 0.(13.10) reduces to
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au(t) = —p+ao (1 (C(1)),0) 21(t)* + a1 (I (C(1)), 0) 21 ()" + a2 (1 (C(1)), 0) 2:(1)°

- /0 0 (ta— D) [0 (1 (C(9)) 1 = 5) 21(1)* + a1 (1 (C(s)) , 1 = 5) i (1)* i (5)?

+ o2 (1 (C(9)), 1 = 5) 21(1)* A1 (5)*] ds, (15.1y)

an(t) = —p+ao (1 (C(1)),0) 22(1)° + a1 (I (C(1), 0) 22(1)" + a2 (1 (C(1)) , 0) 22(1)°

+ /0 5 (ta_ 5 [0 (1 (C(9)) 1 = 5) A2(1)* + &1 (1 (C(s)) , 1 = 5) Aa(1)*Aa(s)?

+ ax (I (C(s)), 1 — 5) A2(t)*22(s)*] ds, (15.15)

0 = —p+a0 (1 (C1)).0) () +atr (1 (C1)).0) 2a(t)* + 12 (I (C(1)) ., 0) 2a(1)°
n /0 a(%s) [0 (1 (€)1 = ) 2at)? + ay (1 (C(s)) o 1 = ) () 2a(5)’

+ ax (I (C(s)), 1 —5) 23(t)*23(s)*] ds. (15.13)

It is intended that (15.1, 53) apply to both compressible materials and incompressible
materials in a single expression. When the material is compressible material, p = 0 and
when it is incompressible, (15.1 5 3) are supplemented by the condition 4, (s)12(s)43(s) = 1,
s €[0,t].

Suppose that the material is compressible. If the histories 4,(s), 12(s), s € [0, t] are
specified, then (15.13) becomes a nonlinear Volterra integral equation for A;(s), s € [0, ¢].
Once this is known, (15.1, 7) are used to determine o 1,(¢), 022(¢), t > 0. If the stress histo-
ries, 011(t), 022(¢), t > 0, are specified, (15.1;,,3) becomes a system of nonlinear Volterra
integral equations for A(s), 4,(s), 43(s), s € [0, 7].

Suppose that the material is incompressible. Then 15(s) = [, (s)/lz(s)]_l, s € [0, t] and
p is found from (15.13). The system reduces to

oi(1) = ao (I (C(1)),0) (4i()* — 23(1)*) + a1 (I (C(1)), 0) (Zi(1)* — A3(1)*)
+ o2 (1 (C(1)), 0) (4i(1)° = 23()°)
+ /0 l a(%_s) oo (1 (€)1 = 5) (0 = 25(0?)
+ o1 (1 (C(5)), 1 = 5) (L) Ai(5)* = A3(1)* 23 (s)?)
+ ar (1(C(s)) 1 =) (M) = 2307 25()*) ] ds, i=1,2.  (15.2)
Equation (15.2) represents a system of equations that relate 4;(¢), 1»(t) and o1, (t), o2(7),

t > 0.If 1,(s), 22(s), s € [0, ¢] are specified, then (15.2) are used to find the stresses. Other-
wise, if any other two histories are specified, (15.2) becomes a system of nonlinear Volterra
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integral equations for the remaining two histories and can be solved using the numerical
method outlined in Section 11.

Biaxial extension histories are used in experiments for determining properties of nonlin-
ear viscoelastic materials. For example, see McGuirt and Lianis [20].

16. HOMOGENEQOUS DEFORMATIONS—SIMPLE SHEAR HISTORIES
Simple shear motion occurs when (3.1) has the form

x1(s) = X; + K(s)Xa,

x(s) = X2, x3(s) = X5, se€l0,¢]. (16.1)
The deformation gradient history is

F(s) =1, s5se€(—00,0)

1 K(s) O
Fs)=[0 1 0], sel0,1]. (16.2)
0 0 1

The history of the relative deformation gradient is

1 —K@) 0
F,(s)= 1|0 1 0|, se(-00,0) (16.3))
0 0 1

(1 K(Gs)—K(@) 0
F(s)= 10 1 0|, sel0,1]. (16.3,)
0 0 1

Since detF(s) = 1, s € (—o0, t], this motion can be produced in both compressible and
incompressible materials.
The kinematic quantities used to calculate stresses from the finite linear viscoelastic and
Pipkin—Rogers constitutive equations are:
1 K(s) 0
Cis)=| K(s) 1+K(s)*> 0|, sel0,1], (16.4)
0 0 1
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[ 14+ K(@)?* K@) O
B() = K1) 1 0
I 0 0 1
1 -K@) 0
C(s)=| —K@) 1+K@)?> 0|, se(—00,0)
0 0 1
i 1 K(s) — K(t) 0
Ci)=| K(s)— K@) 14+(K@s)—K(@)*> 0|, sel0,1]
0 0 1

I (B(n) = L(B() =3+ K1),
L (C() = L(C(s)) =3+ K(5)%,

I;(C(s)) = (B() = 1.

(16.5)

(16.6,)

(16.6)

(16.7)

Space limitations permit the stress components for only the Pipkin—Rogers constitutive equa-
tion to be presented here. It is straightforward to find them finite for linear viscoelasticity.

au(t) = —p+ao (1 (C1)),0) (1+K(®)?) +ai (I (C1)),0) (1+3K()* + K(t)*)

+ a> (I (C(1)),0) (1+6K()*+5K()" + K(1)°)

+ (1+ K(t)Z)/O 0a (Ia((ct(s_))sst —5) 4,

" ooy (I (C(s)),t—s)
=

"0a, (I (C(s)),t —s)
=

(1+ K@)*+ K(s)> + 4K (1)K (s)

+ 2K (1)K (s)’ + 3K (1)*K (s)* + K(1)*K (s)*) ds,
o(t) = —p+ag(I (C)),0) +a; (I(C@)),0) (1+K()*)

+ o2 (1(C0),0) (1+3K(0)* + K©)) + /0 o —s)

"0a; (I (C(s)),t—s)
=

o0 (1 (C(5)) o1 — )
+/0 3=

1+ K(s)*)ds
)

(1+3K(s)*+ K(s)*) ds,

(1+ K@)*+2K (@)K (s) + K(t)*K(s)*) ds

" 0oy (I (C(s)), 1 —s) ds

(16.8y)

(16.85)
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033(1) = =p+ao (I (C(1)),0) +a; (I (C()),0) + az (I (C(1)), 0)

+/0ML_S)(GO(I(C(S)),I—SHW(I(C<s)),r—s>

+ a, (I (C(s)), 1 — 5))ds, (16.83)
o12(t) = ao (I (C(1)),0) K (1) + a1 (I (C(1)),0) K(t) (24 K (1))
+ a> (I (C(1)),0)K(t) (3+4K (1) + K(1)*)

"0ag (I (C(s)),t —s) ooy (I (C(s)),t—ys)
+ K [T e [T

(K (1) + K(s)

00y (I1(C(s)),1 =)
o —ys)

+ K()K (s)*)ds + / QK (s) + K(s)* + K(1)
0

+ 3K (1)K (s)* + K (1)K (s)*)ds, (16.84)
o13(t) = 023(t) =0. (16.85)

For the sake of brevity, (16.8,_3) apply to both compressible materials and incompressible
materials in a single expression, with p = 0 when the material is compressible.

Equation (16.8,), with (16.7), relates the shear stress history to the shear history. They
show that the shear stress is odd in the shear history, i.e. if K(s) is replaced by —K (s),
s € [0, t], then 01,(¢?) is replaced by —a 1,(¢), t > 0. Equations (16.8,_3) show that normal
stresses are required to produce a simple shearing motion. With Equations (16.7) and (16.8,),
the analyses and results presented in Sections 14.2—-14.8 for uniaxial extension are readily
extended to shear response.

An interesting result for isotropic nonlinear elastic solids is the relation

on—oxn =Ko, (16.9)

discovered by Rivlin [38]. This relation, being independent of material properties and there-
fore valid for all isotropic elastic solids, is called a universal relation for isotropic elas-
tic solids. Using the relations (16.8,_4), one finds that the expression o (t) — g (t) —
K (¢)o1,(t) does not vanish because of the presence of integral terms in the constitutive equa-
tion. The development of additional universal relations in nonlinear elasticity has received a
great deal of attention. It does not seem possible to extend these to nonlinear viscoelasticity.
The concept of a universal relation appears to be one associated only with theories in which
the constitutive equations do not consider the history of the motion.
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17.NON-HOMOGENEOUS DEFORMATIONS

Carroll [39, 40] and Fosdick [41] have shown that there are five families of non-homogeneous
motions that are possible in any incompressible isotropic solid, whatever the form of the
constitutive equation. Although the motions are independent of the form of the constitutive
equation, the stresses are not. For each family of motions, Carroll [39, 40] and Fosdick [41]
showed that the stresses are such that an expression for the scalar p can be developed so as
to satisfy the equations of motion. These families of motions have been termed controllable.

The families of motions are listed below, each with its deformation gradient. The relevant
kinematical quantities can then be calculated and used in any constitutive equation of interest.
Expressions for the stresses and the scalar p for a particular constitutive equation are not
provided in this section. However, in the next section, an example is presented for family (3)
using the Pipkin—Rogers constitutive equation.

1. Bending, stretching and shearing of a rectangular block.
The block is described with respect to Cartesian coordinates (X, Y, Z) in its reference
configuration and with respect to cylindrical coordinates (r, 8, z) when ¢ > 0. The motion
(3.1) is described by

r(s) = 2A(s)(X + D(s)),
0(s) = B(s)(Y + E(s)),

z2(s) = — B)C()Y + F(s), se€[0,1] (17.1)

A(s)B(s)

where A(s)B(s) # 0. The deformation gradient is given by

A(s) 0
r(s)
F(s) = 0 r(s)B(s) 0 . (17.2)

2. Straightening, stretching and shearing of a sector of a hollow cylinder.
The sector is described with respect to cylindrical coordinates (R, ®, Z) in its reference
configuration and with respect to Cartesian coordinates (x, y, z) when ¢t > 0. The motion
(3.1) is given by

_ A@)B(s)

x(s) 3 R* + D(s),
y(s) = ABG) + E(s),
z(s) = z + C® + F(s), sel[0,1], (17.3)

B(s)  A(s)B(s)



354 A. WINEMAN

where A(s)B(s) # 0. The deformation gradient is given by

A(s)B(s)’R 0 0
1
F(s) = 0 RAmBe O | (17.4)
C(s) 1

RA(s)B(s) B(s)

3. Inflation, torsion, extension and shearing of an annular wedge.
The body is described with respect to cylindrical coordinates (R, ®, Z) in its reference
configuration and with respect to cylindrical coordinates (r, 8, z) when ¢ > 0. The motion
(3.1) is given by

r(s) = \/A(s)R* + B(s),
6(s) = C(s)® + D(s)Z + G(s),
2(s) = E(s)® + F(s)Z + H(s), (17.5)

where A(s) (C(s)F(s) — D(s)E(s)) = 1. The deformation gradient is given by

r A(s)R 7
o) 0 0
F(s) = 0 @ r(s)D(s) | - (17.6)
0 EI(:) Fis) |

4. Inflation of a sector of a spherical shell.
The body is described with respect to spherical coordinates (R, ®, @) in its reference
configuration and with respect to spherical coordinates (r, 8, ¢) when ¢ > 0. The motion
(3.1) is given by

ris) =(R*+A@)"?, 0=0, ¢=0a. (17.7)

The deformation gradient is given by

2
F(s) = diag {<i> , LI:)’ L}:)

o) . (17.8)

5. Inflation, bending, extension and azimuthal shearing of an annular wedge.
The body is described with respect to cylindrical coordinates (R, ®, Z) in its reference
configuration and with respect to cylindrical coordinates (r, 6, z) when ¢ > 0. The motion
(3.1) is given by
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r(s) = A(s)R,
0(s) = B(s)log R + C(s)® + D(s),
72(s) = E(s)Z + F(s), (17.9)

A(s)?C(s)E(s) = 1. The deformation gradient is given by

A(s) 0 0
F(s) = | A(s)B(s) A(s)C(s) O . (17.10)
0 0 E(s)

The conditions on the time dependent parameters in each motion arise from imposing the
constraint (5.10). There are also conditions on these parameters that ensure that an accel-
eration a can be derived so that (4.3) is satisfied. These conditions and their theoretical
support can also be found in the article by Truesdell and Noll [13].

18. NON-HOMOGENEOUS DEFORMATIONS—FURTHER DISCUSSION OF
FAMILY (3)

Motion (17.5) contains two important special cases, the combined extension, inflation and
torsion of a hollow circular cylinder and the combined tension and torsion of a solid cylinder.
Carroll [40] discussed these cases for a general isotropic incompressible solid. The latter
motion was used by Yuan and Lianis [42] as part of an experimental program to develop
the form of the constitutive equation for finite linear viscoelasticity in (8.13). An example
is presented here of the combined tension and torsion of a solid cylinder using the Pipkin—
Rogers constitutive equation (8.16).

In its reference configuration the radius of the cylinder is R, and its length is L. At time
s € [0, t], the radius is r,(s) and its length is L(s). Axial forces N (s) and twisting moments
M (s) are applied to the end faces of the cylinder and its curved surface is traction free. The
motion is the special case of (17.7),

R2
i)
0(s) = O+ y(s)i(s)Z,

r(s)* =

z(s) = A(s)Z. (18.1)

The deformation gradient (17.6) reduces to
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1/4/2.(s) 0 0
F(s) = 0 1/5/2(s) r(s)w(s)A(s) |, (18.2)
0 0 A(s)

from which important quantities for use in the constitutive equation are found to be

1/4(s) 0 0
Cis) = 0 1/2(s) r($)y (s)v/4(s) ;
0 r®OwEVIE) A6 +r(s)’y(s)*A0s)?

Iy = 2/2(s) + A(s)” + r(s)’w(s)*A(s)’,

L = 1/2()* 4+ 24(s) + r(s)*yw (s)*A(s). (18.3)

Note that C(s), I; and I, can be expressed in terms of either r(s) or R by use of (18.1,).

The components of II(r) in (8.17) can be calculated using (18.3). The calculation is
straightforward and the resulting expressions are omitted for the purpose of brevity. Let the
stress be denoted by

6(t) = —pl+ F(R,1) = —pl+ F(rt), 1), (18.4)

where (18.1,) is used to change the independent variable from R to r(s). By (8.16) and
(18.2), it is found that

Fo(R, 1) = 10, /4,

Foo(R,1) = Tgg/2 4 2y RTly, + Ay* R°TL,,

F..(R,t) = )11,

Fo-(R, 1) = VAlly. + INARyII..,

Fo(R,t) = F,.(R,1) =0. (18.5)

According to (18.4) and (18.5), there can only be a normal traction on the outer surface
of the cylinder. As this surface is free of traction,

0, (r,(1), 1) = 0. (18.6)

This motion and the stresses given by (18.4) and (18.5) must satisfy (4.3) at time t and for
r € [0, r,(¢)]. Both the body force and inertia are neglected here. As shown in the article by
Truesdell and Noll [13], these can be included in a straightforward manner if the body force
can be derived from a potential. Since o,y = o,, = 0 and F depends only on the current
radius, (4.3) implies that p = p(r(¢), t) and the remaining stresses must satisfy
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aGrr Orr — 000
+

=0. 18.7

or r ( )
By use of (18.4)—(18.6), an expression can be found for the scalar “p” that ensures satisfac-
tion of (18.7). This expression for “p” and the resultant expressions for the stresses obtained
from (18.4) are given by

- e 1 _ -
—p(t) = —Fpy + / = [P = £ a7, (18.8))
7o(t) l _ _
O'rr(t) = _/ E [FGG_FN] df, (1882)
_ _ o) 1 _ _
ooo = Foo — Frr — / 7 [Foo — ] dF, (18.85)
_ _ ro(t) 1 - _
0, =F.—F— / = [-7:0(1 - frr] dr. (18.84)

The axial force and twisting moment on the ends of the cylinder are the resultants of
stresses given by

ro(t)
N(t) = 27r/ 0. (r(t), ) rdr. (18.91)
0

ro(t)
M(t) = 2n / rog, (r,t) rdr. (18.9,)
0

The integrals in (18.9; ,) are defined over the current configuration. They can be transformed
into integrals over the reference configutration by evaluating (18.1,) at s = ¢ to give r(t) =
R//A(t), a relation between a radius in the configuration at time ¢ and its corresponding
radius in the reference configuration. On substituting (18.8,) into (18.9,), integrating by
parts to simplify the expression and then changing variables, the expression for the axial
force becomes

RIJ
N() =2r / 2(Fee = For) = (Foo — Frr)] RAR. (18.10)
0

In a similar manner, the expression for the twisting moment becomes

R, 1
NN

Let expressions for Fy,, F,, — F,, and Fyy — F,, be calculated from (8.17) and (18.5) and then
substituted into (18.10) and (18.11). The axial force and twisting moment are then given by

M(t) =2 Fo.R*dR. (18.11)
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M@y =M (A, w)+ /t M (L, yw, A(s), w(s),t —s)ds, (18.12)
0

N(@) = N (4, yw)+ /t N" (A, w, A(s), w(s), t —s)ds, (18.13)
0
in which
R 1
M p) =21 / R~ (o0 (1(C(1)),0) Ry
0

+ a; (I(C(1)),0) [Ry + Ry (A + R*y*2)]

+ a, (1(C(1)), 0) {Rg/ G + 224+ R%ﬂ)

+ Ryl (th//z + (2 szzz)z)} }dR (18.14,)

M" (l’ v, /I(S), l//(S), r— S)

Roo 1 [8ao (I(C(s)),t — )
_ 2
_2”/0 Ri{ s v

da (I(C(s)),t —s)

[RI/I(S) + Ryi (/l(s)2 + R2V/(S)2/1(S))]

ot —s)
002 (1(C(x)). 1 =) et Ry
+ 30— ) {RW(S) (l(s) + A(s)"+ R w(s) l(S))
+ RyL(Ry(5) + (26) + Ry (74()) ] (18.14)

ko q 1
N (A, yp) = 27;/0 ﬁR{ao [1 (C(1)),0] [2 (/12 — I) - szzz]

+ o, [I (C()),0] {2 (l“ — %) + R*y?)? —2R*y? — R“WW}
+ a2 [1(C(), 01 [(227 = R2y22) (B2 + (22 + Ry2)")

3
— IRzyﬂ — 2R*y? (/12+R21//2/1)] }dR, (18.15))

N” (’19 v, /1(3)9 l//(S), r— S)

M [0 C6) =) (o 1Y e
_27r/0 ZAR{ o(t —s) <2<l l) . Wﬂ)
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oay (I(C(s)),t — )
ot —s)

{(}L(s)2 + th//(s)z/l(s)) (2/12 — R? 1//22)

dar (1(C(s)), 1 —5)
ot —s)

S —2R2l//l//(S)} +
1 (s)

X

[(R2w(s>2 + (M7 + 7 10))°) (222 = Rryh) = s

7 2R*y iy (s) (L +2()> + th//(s)zi(s)>] }dR. (18.15,)

A(s)

If either A(s) or w(s), s € [0, t], is specified, then N(¢) and M(¢) are determined from
(18.12)—(18.15). On the other hand, suppose N(s) and M(s), s € [0, t], are specified. Al-
though (18.14,,) and (18.15;,) involve definite integrals over R, they define functions of
their indicated arguments. Thus, (18.12) and (18.13) become a system of coupled nonlinear
Volterra integral equation of form (11.1) for A(s) and y (s) and can be solved by the method
described in Section 11.

19. SOLUTION OF BOUNDARY VALUE PROBLEMS

Nonlinearity in viscoelastic response occurs when there is large deformation and/or nonlin-
ear material properties. The following describes a variety of solutions to nonlinear viscoelas-
tic boundary value problems that have appeared in the literature. It is not intended that an
exhaustive summary of such solutions be provided here. The purpose is to provide a repre-
sentative listing of solutions to nonlinear viscoelasticity problems that have been obtained
and to thereby show that such solutions are quite feasible.

19.1. Finite Deflection of Viscoelastic Beams

Lee and Rogers [43] described the finite deflection of a viscoelastic cantilever beam under a
time dependent concentrated force at its free end. In its undeformed state, the beam thickness
was assumed to be small compared to its length. Points on the neutral axis were allowed
to undergo large displacement while the strains through the thickness were assumed to be
small. With reference to (5.5), the rotations R(z) were large, U(r — s) was approximated by
U(t —s) ~ 1+ e(t — s5), where e(tr — ) is the small strain tensor and F was approximated
by the constitutive equation (2.41) for linearized viscoelasticity. This allowed use of the
assumptions of classical beam theory.

The neutral axis was assumed to be inextensible and of length L. It coincided with the
X-axis in the undeformed state so that each point was labeled by its initial coordinate X,
0 < X < L.Let ¢ (X4, t) denote the angle between the tangent to the point on the deformed
neutral axis at X and the x;-axis at time ¢. The formulation accounted for the application of
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the concentrated force in the current configuration and led to the partial differential-Volterra
integral equation for ¢ (X, 1),

’p(Xi,) LI (0)

[P(t) cosd (X1,1)

ox: I
1 dJ( =)
+ ) 7@ de—n T w). a9

in which [ is the second area moment of the cross section, P(¢) is the applied force at time ¢
and J (¢) is the creep compliance in uniaxial extension. A numerical method of solution was
discussed that extended the approach presented in Section 11, and results were presented that
showed the deflection history of the neutral axis.

19.2. Nonlinear Viscoelastic Membranes

A number of solutions to problems involving large deformations of viscoelastic membranes
have appeared in the literature. For the examples mentioned here, the material is incompress-
ible, isotropic and is described by one of nonlinear single integral constitutive equations
described in Section 8, that is, either the Lianis constitutive equation for finite linear vis-
coelasticity (8.13), the Pipkin—Rogers constitutive equation (8.16) and (8.17) or the K-BKZ
constitutive equation (8.19).

Several problems [44, 45] were solved for large in-plane radial axisymmetric deforma-
tions of an initially plane annular membrane. The Pipkin—Rogers constitutive equation (8.16)
was used, with material parameters being chosen to combine features of the Mooney—Rivlin
model of nonlinear elasticity with the three parameter solid of linear viscoelasticity. Bound-
ary conditions were applied at the inner and outer boundary. In [44], the inner boundary
was traction free. Two cases were considered, one with tractions and one with displacement
specified at the outer boundary. In [45], the inner boundary was fixed, the outer boundary
was traction free and the membrane deformed due to centrifugal force while spinning. The
formulation led to a system of equations of the form

alli(l‘)
OR

D (/11(1), > {Fl (A1) + /Z Gii (A1), A(s), 1 =) ds}
0

n /Ot D (/li(s), aéil(;)) Goi (A1), Als), 1 — ) ds

= F (A(t),r) + /t G (A(t), A(s),t —s,r)ds (19.2)
0

in which A(r) = (4,(¢), 12(¢)), A being the stretch ratio in the radial direction and 1, being

the stretch ratio in the circumferential direction. D and D, being functions of 4; and its partial
derivative with respect to R, define partial differential operators on 4;. Thus, these were two
point boundary value problems involving the nonlinear partial differential-Volterra integral
equation (19.2).
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Several problems have been solved for out-of—plane deformations of initially plane mem-
branes clamped along a circular boundary. In [46] and [47], the membrane was inflated to
a surface of revolution by lateral pressure. In [48], the membrane was deformed axisym-
metrically by a spherical indenter. The Lianis model was used in [46], a special case of the
Pipkin—Rogers model was used in [47] and the K-BKZ model was used in [48]. In another
application [49], a tubular membrane was attached to rigid discs at its ends. The membrane
was deformed by internal pressure and axial forces were applied to the discs. In this case the
material was taken to be a BKZ fluid. Each formulation led to a two-point boundary value
problem with equations similar to (19.2), but with A() = (1,(¢), 42(2), 5(t)), n(t) being
an associated kinematical variable. In each problem, a method of numerical solution was
developed that combined the approach outlined in Section 11 with that of Lee and Rogers
[43]. The inflation of a spherical membrane by internal pressure in [50] showed an inter-
esting phenomenon due to combined large deformation and viscoelasticity. There can be a
time when the solution develops branches. A general discussion of axisymmetric problems
involving nonlinear viscoelastic membranes is given in [51].

19.3. Shearing of Viscoelastic Cylinders

Elastomers are rubbery nonlinear viscoelastic materials that are used in a variety of compo-
nents in vehicles. One class of components, used as part of vehicle suspension systems, con-
sists of bushings. A bushing is essentially a hollow cylinder of elastomeric material contained
between an inner metal rod and an outer metal sleeve. The sleeve and rod are connected to
components of the suspension system. They undergo relative motions along and about their
common centerline as well as along and about axes perpendicular to the centerline. The
relation between the forces and moments applied to the rod and sleeve and their relative mo-
tion is used in the engineering of suspension systems. Models have recently been developed
that relate forces and relative displacements along the common centerline (axial mode) [52],
moments and relative rotations about the common centerline (torsional mode) [53] and their
coupled response [54]. The constitutive equation for the bushing material was taken to be that
of Lianis in (8.13). The cylinder was assumed to undergo axisymmetric linear displacements
w(R, t) along the centerline and/or rotational displacements g(R, t) about the centerline,
both varying with the radius. As a result, each material element experienced an axial shear
k(R,t) = dw(R,t)/0R and a circumferential shear 4(R,t) = ROg(R,t)/0R. The equa-
tions of motion, with cylinder inertia neglected, led to relations between the shear stress o,
and axial force F(¢), o,.(R,t) = F(t)/2x RL and between the shear stress ¢,y and moment
about the centerline M (), o,4(R,t) = M(t)/2n R*>L. The formulation reduced to an equa-
tion of form (11.1) with f(R, 1) = [0,.(R,1),0,9(R,1)] and X(R, 1) = [k(R, 1), h(R, 1)].
This provides a connection between the histories of axial force F(¢) and moment M (¢) and
the histories of the displacements w(R, t) and g(R, t) that is complicated and computation-
ally expensive to use in the design and engineering of vehicle suspensions. It was used instead
to carry out numerical simulations in which displacement histories were specified and the
corresponding forces and moments were calculated. The results were regarded as experimen-
tal data that were then used in a method developed in [55] to construct a force-displacement
level constitutive equation for nonlinear viscoelastic response having the Pipkin—Rogers
framework in (6.11)
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M(r) = R(D(1), 0) + /0 t %d& (19.3)

In (19.3), M(¢) = [F(t), M(¢)] and D(¢) = [@(t),g(t)], w(t) and g(¢) being the rela-
tive axial and rotational displacements, respectively. R(D(¢), #) is a displacement dependent
relaxation function.

19.4. Other Applications

Elastomeric engine mounts are used in vehicles for noise and vibration isolation. Mor-
man [56] considered a cylindrical engine mount that has rigid plates bonded to its end
surfaces. Normal forces on the end plates compress the block while the lateral surface re-
mains traction free. A simplified version of the Lianis constitutive equation (8.13) was
used to model the material. With respect to cylindrical coordinates, the assumptions led
to the following relation between the coordinates (r,6,z) and (R, ®, Z) in the current
and reference configurations, respectively: r = Rf(Z,1), 0 = 0O, z = g(Z,t), where
f(Z,t)*0g(Z,t)/0Z = 1 on account of incompressibility. A partial differential-Volterra in-

tegral equation of form (19.2) was obtained for f(Z, t), where now D=D ( f, L 2/ ) and

0Z° 072

D=D>D ( f, %, i—;@) denote partial differential operators on f(Z, t). Boundary conditions
were applied at the midsurface, Z = 0, and the top of the cylindrical block thereby making
this a two point boundary value problem. The related problem of the non-uniform exten-
sion of a non-linear viscoelastic slab was treated independently in [57]. The Pipkin—Rogers
constitutive equation (8.16) was used to model the material. The kinematical assumptions
were equivalent to those in [56] and the formulation again resulted in a two point bound-
ary value problem. Numerical methods of solution similar to those in the previous examples
were provided.

Although there has been research into the development of constitutive equations that use
the notion of the “strain” clock discussed in Section 10, there have been few studies in the
literature that explore its implications. This is probably due to the fact that the computa-
tional effort required to use such constitutive equations is large. The constitutive equation in
[28] was developed under the auspices of Sandia National Laboratory, which has extensive
experimental and computational facilities. Most applications in this laboratory are project
oriented and few results have been presented in the open literature. However, some work has
appeared. In [58], a constitutive equation for a compressible nonlinear viscoelastic material
was developed that incorporates a strain clock into the Pipkin—Rogers framework. The clock
was chosen to have a simple dependence on shear and volume strains so that its essential
features could be explored and yet be amenable to computation. In [58], a block was sub-
jected to a homogeneous deformation consisting of shear superposed on triaxial extension.
The dimensional, volume changes and shear response in the absence of normal tractions was
studied. In [59], the constitutive equation was used to study circular shear of a cylinder. Ow-
ing to material compressibility, there can be radial motion of cylindrical surfaces as well as
their rotation about the centerline. The influence of the “strain” clock on the moment-rotation
relation, the radial variation of density and the possible growth of a shear boundary layer at
the inner surface were explored.
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The very time dependence of viscoelastic materials means that they dissipate energy.
The influence of viscoelasticity on vibration damping was studied in [60—62]. A mass was
attached to an elastomeric spring modeled by the constitutive equation for finite linear vis-
coelasticity. The equation of motion for the mass was an integro-differential equation, i.e.
an equation in which the left-hand side of (11.1) was replaced by d’x/d¢?. The integrand
was such that the integro-differential could be replaced by a system of first order differential
equations, which was then analyzed.

20. CONCLUDING COMMENTS

This article has presented an overview of the principal ingredients of nonlinear viscoelastic-
ity, described constitutive equations of current interest, illustrated their application to several
problems of technical relevance and discussed a variety of boundary value problems that
have appeared in the technical literature. These problems have been formulated with a semi-
inverse method similar to that used in nonlinear elasticity. In nonlinear elasticity, the spatial
dependence of the deformation is represented by an assumed expression containing parame-
ters that determine the magnitude of the deformation. In nonlinear viscoelasticity, the defor-
mation is embedded in a motion by letting the parameters in this expression be functions
of time. The stretch histories in Sections 13—15, the simple shear history of Section 16, the
deformations of Section 17 and the other examples discussed in Section 19 were formulated
in this manner. Thus, as observed in [45] and [51], boundary value problems in nonlinear
elasticity suggest corresponding problems in nonlinear viscoelasticity. These problems, as in
the examples cited here, lead to partial differential-Volterra equations that can be solved by
the methods in the references mentioned in Section 19.

The above comments should not be construed as suggesting that nonlinear viscoelasticity
is just a straightforward extension of nonlinear elasticity. Nonlinear viscoelasticity incorpo-
rates the same interesting phenomena as nonlinear elasticity. However, the time dependent
behavior of nonlinear viscoelastic solids adds a layer of new and interesting phenomena to
be investigated.

Two classes of nonlinear single integral constitutive equations have been presented, one
for finite linear viscoelasticity and the other for the Pipkin—Rogers theory. The Lianis model,
in the former case, was the result of an extensive experimental program for a particular kind
of rubber. The quasi-linear viscoelastic model, a special version of the latter case, is exten-
sively used to represent the mechanical response of biological tissue. These models were
developed using a limited set of deformation histories. Morman [3] has suggested that it
may be impractical to develop a constitutive equation for all deformation histories. Instead,
special classes of constitutive equations should be developed for special purposes. For ex-
ample, the development of a constitutive equations for small amplitude oscillations about a
finite fixed deformation was the motivation behinds the work in [36] and [37]. The influence
of the underlying finite deformation on the superposed motion is an interesting topic for
investigation.

There appear to have been few studies of the response of nonlinear viscoelastic solids
under a broader set of conditions that include multi-axial deformations, for both deforma-
tion and stress control conditions and with unloading. Moreover, isotropic materials have
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received most of the attention. There is a paucity of studies that explore the consequences of
anisotropy. When the deformation is homogeneous, it is useful to have an estimate of char-
acteristic times for processes such as stress relaxation, creep, and recovery on unloading as
well as an understanding of how these times depend on the deformation. If this is the case, in
a non-homogeneous deformation, the time for the deformation or stress field to evolve may
vary significantly throughout a body. This also appears to be an unexplored area.

An interesting phenomenon occurred in the study of the inflation of a spherical vis-
coelastic membrane under internal pressure. It was shown that there might be a time when
the solution for the deformation branches into several solutions. This event depends on the
pressure history and the material parameters. There has not yet been a study of this phenom-
enon for non-homogeneous deformations. Such a study would determine the conditions for
a branching time to exist, the branching time, the solution branches, and a criterion for the
selection of the appropriate branch followed by the material. An important related topic for
investigation is time dependent stability of viscoelastic bodies.

Another important and relatively unexplored consequence of the time dependence of vis-
coelastic materials is that they dissipate energy and heat up as a result of thermo-mechanical
coupling. Owing to poor heat conduction, there may be regions of significant temperature
rise in a viscoelastic component as it undergoes cyclic loading. Although, this has been
studied in the context of linear viscoelasticity, the influence of material nonlinearity on the
process has received little attention.

Biological tissues generally exhibit nonlinear viscoelastic behavior. Indeed, the constitu-
tive equation for quasi-linear viscoelasticity has been used to model the response of a variety
of such materials. The topics presented in previous sections provide tools and examples that
can be applied to the study of the mechanics of bodies composed of biological tissue. For
example, fibrous tissue in blood vessels is often regarded as transversely isotropic or or-
thotropic. The Pipkin—Rogers constitutive equation in Section 9 provides a framework for
combining these material symmetries with nonlinear viscoelasticity. The mechanics of the
combined extension, inflation and torsion of cylinders of anisotropic materials can then be
treated as in Section 18. Another important topic is that of the influence of viscoelasticity on
cell mechanics. The literature on viscoelastic membranes described in Section 19 provides
the foundation for such research.

The preceding paragraphs describe just a few topics for further investigation that are
inherently associated with the time dependence of nonlinear viscoelastic solids. Many other
topics can be anticipated as a result of the development of polymers that couple viscoelastic
phenomena with other physical fields, i.e. fluid diffusion or polymers that are optically and
electrically active. With the overview of nonlinear viscoelastic solids provided in this article,
it is hoped that one can rapidly become comfortable in the subject and have the background
to begin to explore these new topics.
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