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The purpose of this review paper is to summarize the current knowledge on cell-scale mechanically- 

inflicted deformation-damage, which is at the frontier of cell mechanobiology and biomechanics science, 

specifically in the context of chronic wounds. The dynamics of the mechanostructure of cells and par- 

ticularly, the damage occurring to the cytoskeleton and plasma-membrane when cells are chronically 

deformed (as in a weight-bearing static posture) is correlated to formation of the most common chronic 

wounds and injuries, such as pressure ulcers (injuries). The first occurrence is microscopic injury which 

onsets as damage in individual cells and then progresses macroscopically to the tissue-scale. Here, we 

specifically focus on sub-catastrophic and catastrophic damage to cells that can result from mechanical 

loads that are delivered statically or at physiological rates; this results in apoptosis at prolonged times 

or necrosis, rapidly. We start by providing a basic background of cell mechanics and dynamics, focusing 

on the plasma-membrane and the cytoskeleton, and discuss approaches to apply and estimate deforma- 

tions in cells. We then consider the effects of different levels of mechanical loads, i.e. low, high and 

intermediate, and describe the expected damage in terms of time-scales of application and in terms of 

cell response, providing experimental examples where available. Finally, we review different theoretical 

and computational modeling approaches that have been used to describe cell responses to sustained de- 

formation. We highlight the insights that those models provide to explain, for example, experimentally 

observed variabilities in cell damage and death under loading. 

© 2016 IPEM. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

The dynamics of the mechanostructure of cells and particu-

larly, the occurrence of cytoskeletal and plasma-membrane dam-

age when cells are chronically deformed is correlated to formation

of the most common chronic wounds, including pressure injuries

(also known as pressure ulcers) and diabetic foot ulcers. Those

wounds occur under conditions of a person’s deficient neuro-alarm

mechanisms or their lack of ability to alleviate localized mechan-

ical loads. Thus, the cells within these tissues are subjected to lo-

calized, sustained deformations (strains) and mechanical stresses

that eventually cause injury. The first occurrence is microscopic in-

jury that onsets as damage in individual cells and then progresses

macroscopically to the tissue-scale. 

The purpose of this review is to summarize the current knowl-

edge on cell-scale mechanically inflicted deformation-damage
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hich is at the frontier of cell mechanobiology and biomechan-

cs science. Mechanistic understanding of these phenomena is

till incomplete, yet current knowledge already points to paral-

els between injuries that were thought to have separate and

ifferent pathways, such as pressure injuries and diabetic foot

lcers. Here, we focus on mechanical loads that are delivered stat-

cally or at physiological rates, e.g. deformation to fat cells dur-

ng wheelchair sitting or cyclical deformations in a diabetic foot

hile walking. For completeness, we refer to rapid stretch exper-

ments leading to mechanical damage of neural cells and axons,

n the context of traumatic focal and diffuse brain injury. How-

ver, our emphasis is on cell-level deformation-inflicted damage in

on-traumatic, chronic wounds, and its induction of cytoskeleton

CSK) and plasma-membrane (PM) damage responses at the rele-

ant loading magnitudes and rates. 

We begin this paper by providing a basic background of cell

echanics and dynamics, focusing on the PM and the CSK, and

iscuss approaches to apply and estimate deformations in cells. We

hen consider the effects of different levels of mechanical loads, i.e.

http://dx.doi.org/10.1016/j.medengphy.2016.05.014
http://www.ScienceDirect.com
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Fig. 1. The mechanisms of possible cell responses under mechanical loads (e.g. ex- 

ternal compression or stretching) are cell survival, apoptosis or necrosis for, respec- 

tively, short or low-level, intermediate or extreme extents of loads. Qualitatively, 

the extreme loads will likely lead to immediate rupture and breakdown of the 

plasma-membrane and cytoskeleton (typically the actin), respectively. The interme- 

diate loads may lead to local failure of the cytoskeleton, consequently causing pora- 

tion of the plasma-membrane which then becomes leaky; homeostasis is gradually 

lost and the cell eventually dies by apoptosis. Cells can withstand short or low-level 

loads, e.g. by self-repair. 
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ow, high and intermediate, and describe the expected damage in

erms of time-scales of application and in terms of cell response,

roviding experimental examples where available. Finally, we re-

iew different theoretical and computational modeling approaches

hat have been used to describe cell responses to sustained defor-

ation. Throughout the paper, we highlight the insights that those

odels provide to explain, for example, experimentally observed

ariabilities in cell damage and death under loading. 

.1. Cytoskeletal mechanics and dynamics 

Structural stability of cells and integrity of their PMs mostly

elies on the dynamics and function of the cytoskeleton and its as-

ociated molecular motors. Those allow cells to maintain or adapt-

bly modify their morphology to facilitate cell division, motility,

nd other biological activities [1–3] . The CSK includes the dynamic

ctin and microtubules which enable rapid adaptive responses, and

ntermediate filaments that mostly provide structural support but

ake longer to structurally modify. The main roles of the CSK are

o: (i) spatially organize the cell contents, by maintaining local and

lobal (cell-wide) structure and facilitating intracellular transport;

ii) connect the cell to its external environment, e.g. to neighboring

ells or the extracellular matrix (ECM), and mechanically stabilize

he PM, and (iii) generate coordinated forces that enable shape

hanges and movements [4,5] . The Weihs group has previously

hown that disruption of specific elements of the CSK reduces

ell adhesion and forces that (cancer) cells apply to a soft gel

6] , and also affects cell morphology, overall CSK organization and

ynamics of intracellular transport [7,8] . The PM permeabilization

bserved by the Gefen group during mechanical deformation of

ells [9,10] , is very likely preceded by CSK disruption [1] . 

.2. Plasma-membrane mechanics 

The cell’s plasma-membrane serves as a dynamic, controlled-

enetrability barrier, and it is composed of a phospholipid-based

ilayer with various embedded functional molecules. The PM

hysically separates the cell from its surroundings while also

acilitating exchange of material and information (e.g. ions,

ignaling molecules, etc.) between its internal and external mi-

roenvironments. Mechanosensitive ion channels, for example,

re directly affected by stretch, leading to mechanotransduction

f external, mechanical forces into various intracellular signals

11] . Concurrently, the PM includes specific sites for cell-cell

nd cell-extracellular matrix (ECM) connections, respectively,

sing cadherins and integrins. Such adhesion molecules connect

typically) to the actin cytoskeleton, which then provides the

M’s resistance to shear and deformation by facilitating dynamic

embrane-mechanics. Actin dynamics are used to balance the

embrane tension, e.g. during endocytosis [12] . 

. Applying and estimating dynamic deformations and 

esponses of cells in vitro 

Deformations have been experimentally applied to single cells

nd to cell groups, from monolayers to tissue constructs. Appro-

riately, varied approaches have been developed to facilitate ap-

lication of deformations from local to global scales. We highlight

 few of the current approaches used to induce and measure the

ynamic response of the cell CSK and cell-colony capabilities, in-

luding cell-cell and cell-substrate interactions. 

Much work has been done on the single cell level. Intracellular

article and stained-object tracking have been used to obtain

he combined effects of dynamics and structure in single cells,

evealing native cellular responses to various disease conditions

e.g. cancer) and to applied treatments [7,13–18] . The baseline
ynamics of the cells’ PM fluctuations has also been identified

hrough optical and mechanical interferometry [19,20] . To eval-

ate effects of deformations, disruptions to cell structures were

xternally induced in many different ways. Extensive internal

hanges in cell CSKs were for example induced by ultrasound

rradiation which caused cell-wide responses of transient CSK

reakage, which was reversible under appropriate conditions [21] .

xternal cell measurements have been used to apply deformations

nd to measure local CSK and PM responses as well as whole cell

echanics. For example, methods such as atomic force microscopy

22,23] , magnetic [24,25] and laser tweezers [26,27] , have been

sed to apply forces at specific sites on the PM, inducing direct

hanges to the underlying actin CSK and revealing local PM dy-

amics and response to deformations. Whole cell stretching has

een applied to adherent cells in two general approaches: those

equiring cells to be suspended in solution [28] , and those where

ells are adhered on a typically deformable substrate [9,10,29–33] . 

Stretchable, elastic substrates have provided a platform to eval-

ate effects of cell deformation and mechanical changes on several

cales, from single cells, through monolayers, and tissue constructs.

ingle cells and monolayers have been shown to directly interact

ith the environment, changing their morphology, applying force

nd deforming the substrate and neighboring cells [34,35] . Specifi-

ally, the Weihs lab have shown that single cancer cells may locally

eform soft elastic gels, by modifying their internal structures to

acilitate force application [5,36,37] , an ability which correlates

irectly with their tendency to invade adjacent tissue. Mechanical

nteractions of cells with their substrates have also been shown

o affect differentiation, alignment, and migration capabilities

38–40] . In contrast, deformations applied to and by cell monolay-

rs and tissue constructs, have shown the dynamics of mechanical

nteractions forming between developing cell groups and their

ubstrates [41] as well as larger scale responses. For example,

tretching airway smooth muscle cells modifies the mechanical in-

eractions and changes the tissues function [35] . Similarly, stretch-

ng has been shown to accelerate differentiation of adipocytes

nd production of intracellular lipids [30,42] , and has also caused

ransient membrane poration [9,10,30,32,33] . Thus, the effects of

ocally or globally applied mechanical deformations are extensive

nd far reaching. 

. Deformation-induced cell damage phenomena 

Damage induced by mechanical loads applied to living cells can

e classified into one of three levels that induce different effects

n cell viability and function ( Fig. 1 ): 
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(a) LOW LOADS (physiological-scale loads, the specific magni-

tudes of which depend on the loading mode and cell type)

– Cells will be able to tolerate the loads for a long period

on the scale of the duration of the life-cycle of the stud-

ied cell type. The cells will function normally under the ap-

plied loads throughout the loading period. Examples for this

happen daily, in numerous real-life scenarios, e.g. as cells of

the skin and subcutaneous tissues survive for days under the

weight of a wrist-watch. 

(b) HIGH LOADS (i.e. above-physiological) – Cells will fail catas-

trophically e.g. by being squashed, torn or crushed, thus

irreversibly and instantaneously disrupting their structural

integrity and consequent biological functions. That can occur

in traumatic injuries, e.g. as a result of a car crash, which

causes immediate, large compressive damage to soft tissues.

(c) INTERMEDIATE LOADS (possibly at physiological magnitudes,

but delivered continuously and without relief for long times)

– Cells will not fail immediately, but will also not survive for

a normal cell life-cycle. Instead, the effects of these loads on

the structure and function of cells, particularly on the dy-

namics and the integrity of the CSK and PM, will be such

that cells will gradually and slowly die; if loads are removed

at a timely manner, cells may still recover. 

The latter two damage scenarios, with a focus on the last

one which is somewhat more complex, are explained from a

mechanobiology perspective in this paper. We define here sub-

catastrophic damage mechanism as one resulting from loads that

shorten the life-cycle of a cell (typically causing cell death by

apoptosis), yet do not cause catastrophic damage leading to im-

mediate destruction of the cell structures and instantaneous cell

death (necrosis). 

3.1. Catastrophic structural failure of cells 

In vitro experiments to determine the tolerance of cells to de-

formation exposures were performed either on isolated cells or on

cells embedded in a model ECM as part of tissue engineered mod-

els of deformation-inflicted injury. Peeters and colleagues [43] for

example compressed single unconfined C2C12 mouse myoblast cell

lines using a specialized, bespoke micro-compression device, and

found that the cells were irreversibly damaged at strains of ap-

proximately 70–80%. Essentially, cells were squashed and their PMs

had buckled when reaching these compressive strain levels; PM

buckling was an early marker of structural failure. Later on, Gefen

and co-workers confirmed the above findings in tissue-engineered

models of skeletal muscles, where cells within the construct were

instantaneously and irreversibly damaged and thus destroyed at

the same compressive strain levels [44] . Though no equivalent

quantitative data has been reported for other cell types as of yet, it

is expected that at strains greater than the above values, the CSK

will be significantly disrupted and the PM will massively tear (re-

gardless of the cell type), thereby causing immediate, necrotic cell

death. 

3.2. Sub-catastrophic and reversible damage 

Sustained deformations likely cause biological damage to build-

up in the cells over time, e.g. by gradual destruction of the CSK and

PM [1] , and death by apoptosis; that is in contrast to catastrophic

damage which is instantaneous. This was indicated through the

monotonous and significant increase over 24 h in the percentage of

dead cells in cultured myoblasts subjected to sustained compres-

sive deformations, where no such increase was observed in control

undeformed cells [45] . One of the early studies of sub-catastrophic,

deformation-inflicted damage in tissue-engineered model systems

was that of Breuls and co-workers, about a decade ago [46] . By
ompressing skeletal muscle constructs, they found that under

0%-strain, cell death occurred within 1–2 h, while compression

f 50%-strain led to an earlier onset of cell death. This showed

hat the strain-level threshold for irreversible cell damage depends

n the time of cell exposure to the sustained deformations. Im-

ortantly, since these tissue-engineered constructs were fully oxy-

enated and were kept at a normal, physiological pH (7.4), the

amage must have been caused directly by the inflicted defor-

ations. That contradicted the conventional thinking at the time.

pecifically, it was erroneously believed that in native tissues that

re deformed to large extents for prolonged periods or cyclically,

o that pressure injury or diabetic foot ulcers form, the damage

nsets primarily due to ischemia. However, as will be discussed

elow, the time-scales of ischemia damage are much longer than

he observed, indicating that deformation is the primary cause of

he damage. 

To substantiate and extend the basic studies, Gefen and col-

eagues [44] have built-upon the Breuls paper and extended the

ork considerably, by developing an experimental method to de-

ermine the continuous strain/time threshold function for sub-

atastrophic cell damage. Using tissue-engineered skeletal muscle

onstructs under static compressive strains ranging continuously

etween 0%–80%, they quantified cell death with fluorescent pro-

idium iodide (PI) staining. Thus, they obtained a threshold curve

ith a clear time-dependence, which, for deformation exposures

horter than 6 h, mathematically fit a single-step sigmoid. Their

ork determined a 95% likelihood that myofibers could tolerate

ompressive strains < 40% and < 65% for 4-5 h and 1 h, respec-

ively. The decrease in tolerance of the cells to the applied strains

ence occurred predominantly 1-3 h post-loading. This suggested a

echanism for gradual decrease in cell tolerance to sustained load-

ng leading to sub-catastrophic cell death. 

The mechanism of the damage spiral for sub-catastrophic

ell-level failure was revealed by the Gefen group several years

ater. Using the above-described tissue-engineered model systems

9,10,44,47] , under physiological (muscle) tissue deformation levels

nd using coupled MRI and computational modeling [48-50] ,

learly indicated that death occurs initially at sites of the most

ighly distorted cells. In the human body, cells routinely become

istorted under sustained deformations, when tissues are de-

ormed by bodyweight and during weight-bearing. This occurs

articularly near bony prominences e.g. the ischial tuberosities,

acrum, and posterior aspects of the calcaneal bones when lying.

he central hypothesis of the Gefen group was that such sustained

issue deformations, if not relieved in a timely manner, may induce

ell-scale structural damage to the CSK and the PM. Specifically,

ctin fragmentation eliminates the cytoskeletal support of the

M, which then causes appearance of pores in the PM [1] . PM

ores unbalance the controlled trafficking of ions, metabolites and

aste products in and out of the cell and, thereby, disrupt the

ntracellular homeostatic conditions. Using fluorescence activated

ell sorting (FACS), the Gefen group have shown that myoblasts

tretched to substrate tensile strains ≤ 12% exhibit statistically

ignificant rise in uptake of FITC-labeled dextrans [9] where low

olecular mass (smaller) dextrans entered readily [10] . This was

lso shown using mathematical and computational models of

rans-membrane transport [32,33,51] . Additional evidence for a

eformation-caused PM permeability-increase was later reported

ith regard to cultured osteoblasts, where elevation in cytoso-

ic free-calcium concentrations (likely fluxing inwards from the

xtracellular space) were observed when the PM was punctured

ith an atomic force microscopy tip [52] . Hence, the sustained

echanical distortion of cells causes an intracellular biochemi-

al unbalance which may eventually lead to cell death. Clearly, in

oth bone and muscle cells, calcium concentrations that are above-

ritical are cytotoxic as they lead to mitochondrial failure [53] .
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hus, uncontrolled Ca 2 + influxes (i.e. not via calcium channels)

ay cause cell death shortly after the PM is perforated. Hence,

eformation-driven PM poration and increased permeability not

nly transiently compromise homeostasis, but also, if sustained,

ould eventually cause cell death at timeframes ranging from tens-

f-minutes to several hours. That is substantially faster than the

rogression of any local ischemia-related damage, which precludes

schemia as the primary cause of chronic wounds caused due to

odyweight loads e.g. diabetic ulcers and pressure ulcers [54-56] . 

. Modeling cell deformations 

Analytical modeling provides first approximations to cell defor-

ation states that can be correlated with development of tran-

ient cytoskeletal damage and PM poration or even catastrophic

ell failure. One such simple model was suggested by Slomka and

efen [9] , where a simplified disk-shaped cell, adhered on a pla-

ar substrate is radially deformed, hence causing cell stretching.

hen the substrate is not stretched, the cell is in its undeformed

onfiguration, with the dimensions characterizing the cell being its

nitial diameter, d 0 , and height, H . When the substrate is radially

tretched to a stretch ratio of λ, the surface area dilatation � (in-

rease in the surface area A of the cell relative to the undeformed

urface area, A 0 ) is given by: 

= 

A − A 0 

A 0 

= 

(
λ2 − 1 

)
( d 0 / 2 ) + ( 1 /λ − 1 ) H 

d 0 / 2 + H 

(1) 

An analogous model for a single cell compressed by a flat sub-

trate was proposed earlier, by Takamatsu and Rubinsky [57,58] : 

= 

A − A 0 

A 0 

= 

(
−π2 

16 

+ 

2 

3 

)(
h 

d 0 

)2 

+ 

1 

3 

(
d 0 
h 

)
+ 

π

4 

(
h 

d 0 

)2 

×

√ √ √ √ 

π2 

16 

+ 

2 

3 

{ (
d 0 
h 

)3 

− 1 

} 

− 1 (2) 

here h is the gap size into which the cell (defined by its diameter

 0 ) is being squeezed. It is important to note that the values of the

urface area dilatation for radially stretched cells and compressed

ells are not expected to be identical. 

Regardless of the mechanism by which the cells are deformed,

ells in culture typically exhibit variability in size, and a population

f cells can be described statistically as in Eq. (3) [57,58] : 

f ( d 0 ) = 

1 

σ
√ 

2 π
exp 

[
− ( d 0 − d med ) 

2 

2 σ 2 

]
(3) 

here d med is the median of cell diameters, and σ is the standard

eviation assuming a Gaussian distribution. The distribution of cell

iameters will result in a distribution of deformations induced on

he cells in culture following external loading (either stretching or

ompression, or a combination of which). If only accounting for in-

tantaneous, catastrophic, structural failure of cells (necrosis) when

ubjecting the cells in culture to a given external mechanical load,

ne can assume a Heaviside function for the cell viability. Thus, a

iable (even early apoptotic) cell will have a viability of unity for

< �crit and a viability of zero for � ≥ �crit. However, this ap-

roach does not account for sub-catastrophic loads that cause PM

oration and leakage of ions or molecules, prior to cell death. For

xample, consider three adjacent cells in a culture with d 0 of 30,

0 and 50 μm and common height of 10 μm. If the culture is

tretched to λ= 1.2 then, following Eq. (1) , their area dilatations �

re 20%, 24% and 27%, respectively. That is, even though the sub-

trate is stretched uniformly (radially), cell strains will vary, with

maller cells being subjected to less strain, an observation that

s also consistent with the compression loading model in Eq. (2) .
ontinuing the same example, if we assume that catastrophic fail-

re occurs at � = 25% and PM poration begins developing at �

 20% and becomes more severe with increase of � within the

ub-catastrophic range, then cells can die either instantaneously or

radually over time, through leakage of vital substances and loss of

omeostasis. In this case of the 3-cell example, the largest cell will

ie instantaneously. The mid-sized cell will eventually die as well,

et due to loss of homeostasis, within a time period that will de-

end on the PM poration state. Only the smallest cell will survive

he aforementioned loading exposure. 

To simulate these types of complex damage phenomena a dif-

erent viability function is required. The Heaviside viability func-

ion with the binary condition (i.e. dead or alive) is insufficient

ere. Thus, we can assume a dose-response viability function (e.g.

 sigmoid or a Gompertz function [59] ) which describes a contin-

ous state between a ’fully viable’ and a ’completely dead’ cell. To

xpand the viability function, we consider another aspect of the in-

ividual cells, their stiffness and its changes controlled by dynamic

emodeling of the CSK. In Eqs. (1) and ( 2 ) and the derivation there-

fter, cells are considered to be passive and unable to resist the

xternal loads. However, again for the sake of the argument, under

he hypothetical assumption that a cell can make itself infinitely

tiff (i.e. a rigid body) while the substrate is stretched, it will not

eform with the substrate and hence � will never exceed sub-

atastrophic (CSK damage preceding PM poration) or catastrophic

non-reversible) thresholds. Clearly, cells cannot make themselves

hat rigid, yet they can remodel their CSK to stiffen their structure

f given a sufficient time to respond, which will reduce the effec-

ive �, and will in turn protect their PM and their viability. This

llustrates the likely relation between CSK integrity and function

nd PM loads, and eventually, homeostasis and viability. 

More advanced structural phenomena in mechanically loaded

ells can be evaluated, with the same principles, using finite

lement (FE) modeling; a review of the body of work on computa-

ional cell modeling is available in [60] . In the context of the above

iscussion, however, Slomka and Gefen developed an approach to

btain three-dimensional (3D) cell-specific FE models to simulate

xperiments involving large cell deformations, based on analysis

f confocal (z-stack) images of multiple undifferentiated skeletal

uscle cells (C2C12 myoblasts) [61,62] . Using those models, the

agnitudes and distributions of strains developing in cells with

ifferent structures were evaluated under large-deformation com-

ression and stretching; similar large deformations have been used

o experimentally simulate chronic wounds, in our group and oth-

rs. The large deformations caused localized stretches in the PM

nd in the nuclear membrane, and the cell-specific computational

odels [61,62] demonstrated, as in the analytical models above,

he considerable variability in cell morphology and architecture;

uch variability is expected not only across phenotypes, but also

ithin the same phenotype and even within the same culture dish.

hus, although the external loading is applied uniformly (e.g. by

ubstrate stretching or compression), different cells are expected

o be exposed to substantial variable strains. These differences in

he strains developed in each cell, observed analytically and by

omputational FE models, explains the variabilities across experi-

ents and within them in rapid necrotic death as well as in times

f early apoptosis or loss of viability due to impaired homeostasis;

hat is since each cell is essentially bearing a different strain level.

onsidering cells that are also differentiating, the structural orga-

ization of the cell changes over time, which affects its stiffness

nd CSK arrangement, and hence its ability to resist deformation

r deform to redistribute the loads. For example, in differenti-

ting adipocytes or myoblasts, respectively, lipid droplets and

yotubes form, modifying the cells ability to resist load, which

as been demonstrated by the Gefen lab, particularly in adipocytes

63-65] . 
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5. Summary 

Various types of chronic wounds and tissue injuries are associ-

ated with sustained tissue and cell deformations: pressure injuries

(induced by bodyweight loads); diabetic foot ulcers (again body-

weight loads); urinary tract and kidney disorders (urine pressure)

etc. In all these examples, the mechanical deformation is counter-

acted by the dynamic CSK, and if the CSK cannot counteract the

external loads transferred from the extracellular environment, the

PM may be irreversibly deformed up to local failure, and the cas-

cade then leads to PM leakiness. While other underlying causes

and stages may exist, we propose that the main tissue damage

originates from this mechanical cascade. 

The purpose of this review paper was hence to summa-

rize the current knowledge on cell-scale mechanically-inflicted

deformation-damage which is at the frontier of modern cell

mechanobiology and biomechanics science, specifically in the con-

text of chronic wounds. The dynamics of the mechanostructure of

cells and particularly, the damage occurring to the CSK and PM

when cells are chronically deformed (as in a weight-bearing static

posture leading to pressure injuries) is correlated to formation of

the most common chronic wounds. The first occurrence is micro-

scopic injury which onsets as damage in individual cells that then

progresses macroscopically to the tissue-scale. Here, we specifically

focused on sub-catastrophic and catastrophic damage to cells that

can result from mechanical loads that are delivered statically or at

physiological rates; this results in apoptosis at prolonged times or

necrosis, rapidly. Theoretical as well as computational (FE) model-

ing has indicated that the individual cell geometry strongly affects

strains that develop in the cells and on them, in the PM, and ad-

equate dynamic function of the CSK is necessary for allowing cells

to adapt to external loads so that their PM deformation will be

minimal (and so will be the risk for PM poration which neces-

sarily leads to loss of homeostasis). In this paper, we highlighted

the insights that the aforementioned theoretical and computational

models provide to explain the above phenomena, for example, ex-

perimentally observed variabilities in cell damage and death under

loading. Better understanding of variabilities in mechanical perfor-

mances of cells, either of the same type or of different types, is

essential for interpreting any experimental data involving applica-

tion of mechanical loads to cells. 
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